Salty Matters

The Blog is written by me, John Warren. Once every three or four weeks or so I will post an article or two on an evaporite topic that has piqued my interest. On the Saltwork Publications webpage (under "the Works") there is a growing library of pdfs and epubs based on these blogs. These articles on the website have much higher resolution extractable graphics in than in the blog. There is also a link to this set of pdfs and epubs on the home page (www.saltworkconsultants.com).

Brine evolution and origins of potash - primary or secondary. Ancient potash ores: Part 3 of 3

John Warren - Monday, December 31, 2018

Introduction

In the previous two articles in this series on potash exploitation, we looked at the production of either MOP or SOP from anthropogenic brine pans in modern saline lake settings. Crystals of interest formed in solar evaporation pans and came out of solution as: 1) Rafts at the air-brine interface, 2) Bottom nucleates or, 3) Syndepositional cements precipitated within a few centimetres of the depositional surface. In most cases, periods of more intense precipitation tended to occur during times of brine cooling, either diurnally or seasonally (sylvite, carnallite and halite are prograde salts). All anthropogenic saline pan deposits examples can be considered as primary precipitates with chemistries tied to surface or very nearsurface brine chemistry.

In contrast, this article discusses ancient potash deposits where the chemistries and ore textures are responding to ongoing alteration processes in the diagenetic realm. Unlike the modern brine pans where brines chemistries and harvested mineralogies are controllable, at least in part, these ancient deposits show ore purities and distributions related to ongoing natural-process overprints.



Table 1 lists some modern and ancient potash deposits and prospects by dividing them into Neogene and Pre-Neogene deposits (listing is extracted and compiled from SaltWork® database Version 1.7). The Neogene deposits are associated with a time of MgSO4-enriched seawaters while a majority of the Pre-Neogene deposits straddle times of MgSO4 enrichment and depletion in the ocean waters.

Incongruent dissolution in burial

Many primary evaporite salts dissolve congruently in the diagenetic realm; i.e., the composition of the solid and the dissolved solute stoichiometrically match, and the dissolving salt goes entirely into solution (Figure 1a). This situation describes the typical subsurface dissolution of anhydrous evaporite salts such as halite or sylvite. However, some evaporite salts, typically hydrated salts, such as gypsum or carnallite, dissolve incongruently in the diagenetic realm, whereby the composition of the solute in solution does not match that of the solid (Figure 1b). This solubilisation or mineralogical alteration is defined by the transformation of the "primary solid" into a secondary solid phase, typically an anhydrous salt, and the loss of water formerly held in the lattice structure. The resulting solution generally carries ions away in solution.


More than a century ago, van't Hoff (1912) suggested that much subsurface sylvite is the result of incongruent solution of carnallite yielding sylvite and a Mg-rich solution. According to Braitsch (1971, p. 120), the incongruent alteration (dissolution) of carnallite is perhaps the most crucial process in the alteration of subsurface potash salts and the formation of diagenetic (secondary) sylvite.

Widespread burial-driven incongruent evaporite reactions in the diagenetic realm include the burial transition of gypsum to anhydrite (reaction 1)

CaSO4.2H2O --> CaSO4 + 2 H2O ... (1)

and the in-situ conversion of carnallite to sylvite via the loss of magnesium chloride in solution (reaction 2)

KMgCl3.6H2O --> KCl + Mg++ + 2Cl- + 6H2O ...(2)

Typically, a new solid mineral remains, and the related complex solubility equilibrium creates a saline pore water that may, in turn, drive further alteration or dissolution as it leaves the reaction site (Warren, Chapters 2 and 8). Specifically for ancient potash, reaction 2 generates magnesium and chloride in solution and has been used to explain why diagenetic bischofite and dolomite can be found in proximity to newly formed subsurface sylvite. Bischofite is a highly soluble salt and so is metastable in many subsurface settings where incongruent dissolution is deemed to have occurred, including bischofite thermal pool deposits in the Dallol sump in the Danakhil of Ethiopia (Salty Matters, May 1, 2015). In many hydrologically active systems, solid-state bischofite is flushed by ongoing brine crossflow and so help drive the formation of various burial dolomites. Only at high concentrations of MgCl2 can carnallite dissolve without decomposition.

Laboratory determinations

In the lab, the decomposition of carnallite in an undersaturated aqueous solution is a well-documented example of incongruent dissolution (Emons and Voigt, 1981; Xia et al., 1993; Hong et al., 1994; Liu et al., 2007; Cheng et al., 2015, 2016). When undersaturated water comes into contact with carnallite, the rhombic carnallite crystals dissolve and, because of the common ion effect, small cubic KCl crystals form in the vicinity of the dissolving carnallite. As time passes, the KCl crystals grow into larger sparry subhedral forms and the carnallite disappears.

Carnallite’s crystal structure is built of Mg(H2O)6 octahedra, with the K+ ions are situated in the holes of chloride ion packing meshworks, with a structural configuration similar to perovskite lattice types (Voigt, 2015). Potassium in the carnallite lattice can be substituted by other large single-valence ions like NH4+, Rb+, Cs+ or Li(H2O)+, (H3O)+ and Cl- by Br- and I-. These substitutions change the lattice symmetry from orthorhombic in the original carnallite to monoclinic.

When interpreting the genesis of ancient potash deposits and solutions, the elemental segregation in the lattice means trace element contents of bromide, rubidium and caesium in primary carnallite versus sylvite daughter crystals from incongruent dissolution can provide valuable information. For example, in a study by Wardlaw, (1968), a trace element model was developed for sylvite derived from carnallite that gave for Br and Rb concentration ranges of 0.10–0.90 mg/g and 0.01–0.18 mg/g, respectively. In a later study of sylvite derived by fresh-water leaching of magnesium chloride under isothermal conditions at 25 °C. Cheng et al. (2016), defined a model whereby primary sylvites precipitated from MgSO4-deficient sea water, gave Br and Rb concentration ranges of 2.89–3.54 mg/g and 0.017–0.02 mg/g, respectively (no evaporation occurred at saturation with KCl). In general, they concluded sylvite derived incongruently from carnallite would contain less Br and more Rb than primary sylvite (Figure 2; Cheng et al., 2016).


Subsurface examples

The burial-driven mechanism widely cited to explain the incongruent formation of sylvite from carnallite is illustrated in Figure 3 (Koehler et al., 1990). Carnallite precipitating from evaporating seawater at time 1 forms from a solution at 30°C and atmospheric (1 bar) pressure, and so plots as point A, which lies within the carnallite stability field (that is, it sits above the dashed light brown line). With subsequent burial, the pressure increases so that the line defining carnallite-sylvite boundary (solid dark brown line) moves to higher values of K. By time 2, when the pressure is at 1 Kbar (corresponds to a lithostatic load equivalent to 2-3 km depth), the buried carnallite is thermodynamically unstable and so is converting to sylvite + solution (as the plot field now lies in the sylvite + solution field (Figure 3). If equilibrium is maintained the carnallite reacts incongruently to form further sylvite and MgCl2-solution. Thus, provided the temperature does not rise substantially, increasing pressure as a result of burial will favour the breakdown of carnallite to sylvite. However, as burial proceeds, the temperature may become high enough to favour once again the formation of carnallite from sylvite + solution (that is the solution plot point from A moves toward the right-hand side of the figure and back into the carnallite stability field).


Sylvite, interpreted to have formed from incongruent dissolution of primary carnallite, is reported from the Late Permian Zechstein Formation of Germany (Borchert and Muir, 1964), Late Permian Salado Formation of New Mexico (Adams, 1970), Early Mississippian Windsor Group of Nova Scotia (Evans, 1970), Early Cretaceous Muribeca Formation of Brazil and its equivalents in the Gabon Basin, West Africa (Wardlaw, 1972a, b; Wardlaw and Nicholls, 1972; Szatmari et al., 1979; de Ruiter, 1979), Late Cretaceous of the Maha Sarakham Formation, Khorat Plateau, Thailand and Laos (Hite and Japakasetr, 1979), Pleistocene Houston Formation, Danakil Depression, Ethiopia (Holwerda and Hutchinson, 1968), and Middle Devonian Prairie Formation of western Canada (Schwerdtner, 1964; Wardlaw, 1968) (See Table 1).

This well-documented literature base supports a long-held notion that there is a problem with sylvite as a primary (first precipitate) marine bittern salt, especially if the mother seawater had ionic proportions similar to those present in modern seawater (see Lowenstein and Spencer, 1990 for an excellent, if 30-year-old, review). We know from numerous evaporation experiments, that sylvite does not crystallise during the evaporation of modern seawater at 25°C, except under metastable equilibrium conditions (Braitsch, 1971; Valyashko, 1972; Hardie, 1984). The sequence of bitterns crystallising from modern seawater bitterns was illustrated in the previous Salty Matters article in this series (see Figure 1 in October 31 2018).

Across the literature documenting sylvite-carnallite associations in ancient evaporites, the dilemma of primary versus secondary sylvite is generally solved in one of three ways. Historically, many workers interpreted widespread sylvite as a diagenetic mineral formed by the incongruent dissolution of carnallite (Explanation 1). Then there is the interpretation that some sylvite beds, perhaps associated with tachyhydrite, were precipitated in the evaporite bittern part of a basin hydrology that was fed by CaCl2-rich basinal hydrothermal waters (Explanation 2: see Hardie, 1990 for a good discussion    of this mechanism). Then there is the third, and increasingly popular explanation of primary or syndepositional sylvite at particular times in the chemical evolution of the world oceans (MgSO4-depleted oceans).


Changes in the relative proportions of magnesium, sulphur and calcium in the world’s oceans are well supported by brine inclusion chemistry of co-associated chevron halite (Figure 4). Clearly, there are vast swathes of times in the earth’s past when the chemistry of seawater changed so that MgSO4 levels were lower than today and it was possible that sylvite was a primary marine bittern precipitate (see Lowenstein et al., 2014 for an excellent summary).

In my opinion, there is good evidence that all three explanations are valid within their relevant geological contexts but, if used exclusively to explain the presence of ancient sylvite, the argument becomes somewhat dogmatic. I would say that that, owing to its high solubility, the various textures and mineralogical associations of carnallite/sylvite and sulphate bitterns found in ancient potash ore beds reflect various and evolving origins. Ambient textures and mineralogies are dependent on how many times and how pervasively in a potash sequence’s geological burial history an evolving and reactive pore brine chemistry came into contact with parts or all of the extent of highly reactive potash beds (Warren, 2000; 2010; 2016).

In my experience, very few ancient examples of economic potash show layered textures indicating primary precipitation on a brine lake floor, instead, most ancient sylvite ores show evidence of at least one episode of alteration. That is, various forms and textures in potash may dissolve, recrystallise and backreact with each other from the time a potash salt is first precipitated until it is extracted. The observed textural and mineralogical evolution of a potash ore association depends on how open was the hydrology of the potash system at various stages during its burial evolution. The alteration can occur syndepositionally, in brine reflux, or later during flushing by compactional or thermobaric subsurface waters or during re-equilibration tied to uplift and telogenesis. Tectonism (extensional and compactional) during the various stages of a basin’s burial evolution acts as a bellows driving fluid flow within a basin, so forcing and speeding up the focused circulation of potash-altering waters.

 

A similar, but somewhat less intense, textural evolution tied to incongruent alteration is seen in the burial history of other variably hydrated evaporite salts. For example, CaSO4 can flip-flop from gypsum to anhydrite and back again depending on temperature, pore fluid salinity and the state of uplift/burial. Likewise, with the more complicated double salt polyhalite, there are mineralogical changes related to whether it formed in a MgSO4 enriched or depleted world ocean and the associated chemistry of the syndepositional reflux brines across extensive evaporite platforms (for a more detailed discussion of polyhalite see Salty Matters, July 31, 2018). Kainite-kieserite-carnallite also show evidence of ongoing incongruent interactions. This means that, as in gypsum/anhydrite/polyhalite or kain ite/kieserite sequences, there will be primary and secondary forms of both carnallite and sylvite that can alternate during deposition, during burial and any deep meteoric flushing and then again with uplift. In Quaternary brine factories these same incongruent chemical relationships are what facilitate the production of MOP (sylvite) from a carnallitite feed or SOP from kainite/kieserite/schoenite feed (see articles 1 and 2 in this series).

 

To document the three end-members of ancient sylvite-carnallite decomposition/precipitation we will look at three examples; 1) Oligocene potash in the Mulhouse Basin where primary sylvite textures are commonplace, 2) Devonian potash ores in western Canada, where multiple secondary stages of alteration are seen, and 3) Igneous-dyke associated sylvite in east Germany where thermally-driven volatisation (incongruent melting) forms sylvite from dehydrated carnallite.


Oligocene Potash, Mulhouse Basin France

Moving backwards into deep time, this 34 Ma deposit contains some of the first indications of well preserved primary marine-fed sylvinite (MOP) textures exemplified by laterally-continuous mm-scale alternations of potash and halite layers and lamina (Figure 5a-c). Interestingly, all solid-state potash deposits laid down in the post-Oligocene period contain increased proportions of MgSO4 salts, making them much more difficult to economically mine and process (see Table 1 and Salty Matters, May 12, 2015)

From 1904 until 2002, potash was conventionally mined in France from the Mulhouse Basin (near Alsace, France). With an area of 400 km2, the Mulhouse Basin is the southernmost of a number of Lower Oligocene evaporite basins that occupied the upper Rhine Graben, which at that time was a narrow adiabatic-arid rift valley (Figure 6a). The graben was a consequence of the collision between European and African plates during the Paleogene. It is part of a larger intracontinental rift system across Western Europe that extended from the North Sea to the Mediterranean Sea, stretching some 300 km from Frankfurt (Germany) in the north, to Basel (Switzerland) in the south, with an average width of 35 km (Cendon et al., 2008). The southern extent of the graben is limited by a system of faults that place Hercynian massifs and Triassic materials into contact with the Paleogene filling. Across the north, a complex system of structures (including salt diapirs) put the basin edges in contact with Triassic, Jurassic and Permian materials. In the region of the evaporite basins, the Paleogene fill of the graben lies directly on the Jurassic basement. The sedimentary filling of this rift sequence is asymmetrical with the deeper parts located at the southwestern and northeastern sides of the Graben (Rouchy, 1997).


Palaeogeographical reconstructions place the potential marine seaway seepage feed to the north or perhaps also southeast of the Mulhouse Basin, while marginal continental conglomerates tend to preclude any contemporaneous hydrographic connection with Oligocene ocean water (Blanc-Valleron, 1991; Hinsken et al., 2007; Cendon et al., 2008). At the time of its hydrographic isolation, some 34 Ma, the basin was located 40° north of the equator. Total fill of Oligocene lacustrine/marine-fed sediments in the graben is some 1,700m thick. The saline stage is dominated by anhydrite, halite and mudstone. The main saline sequence is underlain by non-evaporitic Eocene continental mudstones, with lacustrine fossils and local anhydrite beds. Evaporite bed continuity in the northern part of the basin is disturbed by (Permian-salt cored) diapiric and or erosional/fault movement. Consequently, these northern basins are not considered suitable for conventional potash mining (Figure 6a).

The Paleogene fill of the basin is divided into 6 units; a pre-evaporitic series, Lower Salt Group (LSG), Middle Salt Group (MSG), an Upper Salt Group (USG - with potash), Grey Marls Fm., and the Niederroedern Fm (Figure 7; Cendon et al., 2008). The LSG and lower section of the MSG are interpreted as lacustrine in origin, based on the limited palaeontologic and geochemical data. However, based on the presence of Cenozoic marine nannoplankton, shallow water benthic foraminifera, and well-diversified dinocyst assemblages in the fossiliferous zone below Salt IV, Blanc-Valleron (1991) favours a marine influence near the top of the MSG, while recognising the ambiguity of marine proportions with brackish faunas. Many marine-seepage fed brine systems have salinities that allow halotolerant species to flourish in marine-fed basins with no ongoing marine hydrographic connection (Warren, 2011). According to Blanc-Valleron and Schuler (1997), the region experienced a Mediterranean climate with long dry seasons during Salt IV member deposition.


In detail, the Salt IV member is made up of some 210 m of evaporitic sequence, with two relatively thin potash levels (Ci and Cs). The stratigraphy associated with this potash zone is, from base to top (Figure 7):

S2 Unit: 11.5 m thick with distinct layers of organic-rich marls, often dolomitic, with dispersed anhydrite layers.

S1 Unit: 19 m thick, evenly-bedded and made up of alternating metre-scale milky (inclusion-rich) halite layers, with much thinner marls and anhydrite layers. Marls show a sub-millimetric lamination formed by micritic carbonate laminae alternating with clay, quartz, and organic matter-rich laminae. Hofmann et al. (1993a, b) interpreted these couplets as reflecting seasonal variations. Anhydrite occasionally displays remnant swallowtail ghost textures, which suggest that at least part of the anhydrite first precipitated as subaqueous gypsum. Halite shows an abundance of growth-aligned primary chevron textures, along with fluid-inclusion banding suggesting halite was subaqueous and deposited beneath shallow brine sheets (Lowenstein and Spencer, 1990).

S Unit: Is 3.7 m thick and consists of thin marl layers and anhydrite, similar to the S2 Unit, with a few thin millimetric layers of halite.

Mi Unit: With a thickness of 6 m, it is mostly halite with similar characteristics to the S1 Unit. Sylvite was detected in one sample, but its presence is probably related to the evolution of interstitial brines (Cendon et al., 2008).

Ci Unit (“Couche inférieure”): Is formed by 4 m of alternating marls/anhydrite, halite, and sylvite beds (Figure 7).

The Ti unit consists of alternating beds of halite, marl and anhydrite. The top of the interval is the T unit, which is similar to the S unit and consists of alternating beds of marl and anhydrite. Above this is the Ms or upper Marl, near identical to the lower marl Mi. The Mi is overlain by the upper potash bed (Cs), a thinner, but texturally equivalent, bed compared to the sylvinitic Ci unit.

Thus, the Oligocene halite section includes two thin, but mined, potash zones: the Couche inferieure (Ci; 3.9m thick), and Couche superieure (Cs; 1.6m thick), both occur within Salt IV of the Upper Salt group (Figures 5, 7).

Both potash beds are made up of stacked, thin, parallel-sided cm-dm-thick beds (averaging 8 cm thickness), which are in turn constructed of couplets composed of grey-coloured halite overlain by red-coloured sylvite (Figure 5b). Each couplet has a sharp base that separates the basal halite from the sylvite cap of the underlying bed. In some cases, the separation is also marked by bituminous partings. The bottom-most halite in each dm-thick bed consists of halite aggregates with cumulate textures that pass upward into large, but delicate, primary chevrons and cornets. Clusters of this chevron halite swell upward to create a cm-scale hummocky boundary with the overlying sylvite (Figure 5c; Lowenstein and Spencer, 1990).

The sylvite member of a sylvinite couplet consists of granular aggregates of small transparent halite cubes and rounded grains of red sylvite (with some euhedral sylvite hoppers) infilling the swales in the underlying hummocky halite (Figure 5b,c). The sylvite layer is usually thick enough to bury the highest protuberances of the halite, so that the top of each sylvite layer, and the top of the couplet, is flat. Dissolution pipes and intercrystalline cavities are noticeably absent, although some chevrons show rounded coigns. Intercalated marker beds, formed during times of brine pool freshening, are composed of a finely laminated bituminous shale, with dolomite and anhydrite.

The sylvite-halite couplets record combinations of unaltered settle-out and bottom-nucleated growth features, indicating primary chemical sediment accumulating in shallow perennial brine pools (Lowenstein and Spencer, 1990). Based on the crystal size, the close association of halites with sylvite layers, their lateral continuity and the manner in which sylvite mantles overlie chevron halites, the sylvites are interpreted as primary precipitates. Sylvite first formed at the air-brine surface or within the uppermost brine mass and then sank to the bottom to form well-sorted accumulations. As sylvite is a prograde salt it, like halite, probably grew during times of cooling of the brine mass (Figure 8a). These times of cooling could have been diurnal (day/night) or weather-front induced changes in the above-brine air temperatures. Similar cumulate sylvite deposits form as ephemeral bottom accumulations on the floor of modern Lake Dabuxum in China during its more saline phases.


The subsequent mosaic textural overprint seen in many of the Mulhouse sylvite layers was probably produced by postdepositional modification of the crystal boundaries, much in the same way as mosaic halite is formed by recrystallisation of raft and cumulate halite during shallow burial. Temperature-based inclusion studies in both the sylvite and the halites average 63°C, suggesting solar heating of surface brines as precipitation took place (Figure 8b; Lowenstein and Spencer, 1990). Similar high at-surface brine temperatures are not unusual in many modern brine pools, especially those subject to periodic density stratification and heliothermometry (Warren 2016; Chapter 2).

Mineralogically, potash evaporites in the Mulhouse Basin in the Rhine Graben (also known as the Alsatian (Alsace) or Wittelsheim Potash district) contain sylvite with subordinate carnallite, but lack the abundant MgSO4 salts characteristic of the evaporation of modern seawater. The Rhine graben formed during the Oligocene, via crustal extension, related to mantle upwelling. It was, and is, a continental graben typified by high geothermal gradients along its rift axis. In depositional setting, it is not dissimilar to pree-120,000-year potash fill stage in the Quaternary Danakil Basin or the Dead Sea during deposition of potash salts in the Pliocene Sedom Fm. The role of a high-temperature geothermal inflow in defining the CaCl2 nature of the potash-precipitating brines, versus a derivation from a MgSO4-depleted marine feed, is considered significant in the Rhine Graben deposits, but is poorly understood and still not resolved (Hardie, 1990; Cendón et al., 2008). World ocean chemistry in the Oligocene is on a shoulder between the MgSO4-depleted CaCl2-rich oceans of the Cretaceous and the MgSO4-enriched oceans of the Neogene (Figure 4).


Cendón et al. (2008) conclude brine reaction processes were the most important factors controlling the major-ion (Mg, Ca, Na, K, SO4, and Cl) evolution of Mulhouse brines (Figure 9a-d). A combined analysis of fluid inclusions in primary textures by Cryo-SEM-EDS with sulphate- d34S, d18O and 87Sr/86Sr isotope ratios revealed likely hydrothermal inputs and recycling of Permian evaporites, particularly during the more advanced stages of evaporation that laid down the Salt IV member. Bromine levels imply an increasingly concentrated brine at that time (Figure 9a). The lower part of the Salt IV (S2 and S1) likely evolved from an initial marine input (Figure 9b-d).

Throughout, the basin was disconnected from direct marine hydrographic connection and was one of a series of sub-basins formed in an active rift setting, where tectonic variations influenced sub-basin interconnections and chemical signatures of input waters. Sulphate-d34S shows Oligocene marine-like signatures at the base of the Salt IV member (Figure 9c, d). However, enriched sulphate-d18O reveals the importance of synchronous re-oxidation processes.

As evaporation progressed, other non-marine or marine-modified inputs from neighbouring basins became more important. This is demonstrated by increases in K concentrations in brine inclusions and Br in halite, sulphate isotopes trends, and 87Sr/86Sr ratios (Figure 9b, c). The recycling (dissolution) of previously precipitated evaporites of Permian age was increasingly important with ongoing evaporation. In combination, this chemistry supports the notion of a connection of the Mulhouse Basin with basins situated north of Mulhouse. The brine evolution eventually reached sylvite precipitation. Hence, the chemical signature of the resulting brines is not 100% compatible with global seawater chemistry changes. Instead, the potash phase is tied to a hybrid inflow, with significant but decreasing marine input.

There was likely an initial marine source, but this occurred within a series of rift-valley basin depressions for which there was no direct hydrographic connection to the open ocean, even at the time the Middle Salt Member (potash-entraining) was first deposited (Cendon et al., 2008). That is, the general hydrological evolution of the primary textured evaporites in the Mulhouse basin sump is better explained as a restricted sub-basin with an initial marine-seepage stage. This gradually changed to ≈ 40% marine source near the beginning of evaporite precipitation, with the rest of hydrological inputs being non-marine. There was a significant contribution of solutes from recycled, in part diapiric, Permian evaporites, likely remobilised by the tectonics driving the formation of the rift valley (Hinsken et al., 2007; Cendon et al., 2008). The general proportion of solutes did not change substantially over the time of evaporite precipitation. However, as the basin restriction increased, the formerly marine inputs changed to continental, diapiric or marine-modified inputs, perhaps fed from neighbouring basins north of Mulhouse basin. As in the Ethiopian Danakhil potash-rift, it is likely brine interactions occurred both during initial and early post-depositional reflux overprinting of the original potash salt beds.


West Canadian potash (Devonian)

The Middle Devonian (Givetian) Prairie Evaporite Formation is a widespread potash-entraining halite sequence deposited in the Elk Point Basin, an early intracratonic phase of the Western Canada Sedimentary Basin (WCSB; Chipley and Kyser, 1989). Today, it is the world’s predominant source of MOP fertiliser (Warren, 2016). The flexure that formed the basin and its subsealevel accommodation space was a distal downwarp to, and driven by, the early stages of the Antler Orogeny (Root, 2001). Texturally and geochemically the potash layers in the basin show the effects of multiple alterations and replacements of its potash minerals, especially interactions between sylvite and carnallite in a variably recrystallised halite host.

Regionally halite constitutes a large portion of the four formations that make up the Devonian Elk Point Group (Figure 10): 1) the Lotsberg (Lower and Upper Lotsberg Salt), 2) the Cold Lake (Cold Lake Salt), 3) the Prairie Evaporite (Whitkow and Leofnard Salt), and 4) the Dawson Bay (Hubbard Evaporite). Today the remnants of the Middle Devonian Prairie Evaporite Formation constitute a bedded unit some 220 metres thick, which lies atop the irregular topography of the platform carbonates of the Winnipegosis Fm. Extensive solutioning of the various salts has given rise to an irregular thickness to the formation and the local absence of salt (Figure 11a).


The Elk Point Group was deposited within what is termed the Middle Devonian “Elk Point Seaway,” a broad intracratonic sag basin extending from North Dakota and northeastern Montana at its southern extent north through southwestern Manitoba, southern and central Saskatchewan, and eastern to northern Alberta (Figure 11a). Its Pacific coast was near the present Alberta-British Columbia border, and the basin was centred at approximately 10°S latitude. To the north and west the basin was bound by a series of tectonic ridges and arches; but, due to subsequent erosion, the true eastern extent is unknown (Mossop and Shetsen, 1994). In northern Alberta, the Prairie Evaporite is correlated with the Muskeg and Presqu’ile formations (Rogers and Pratt, 2017).

Hydrographic isolation of the intracratonic basin from its marine connection resulted in the deposition of a drawndown sequence of basinwide (platform-dominant) evaporites with what is a uniquely high volume of preserved potash salts deposited within a clayey halite host. The potash resource in this basin far exceeds that of any other known potash basin in the world.


Potash geology

Potash deposits mined in Saskatchewan are all found within the upper 60-70 m of the Prairie Evaporite Formation, at depths of more than 400 to 2750 metres beneath the surface of the Saskatchewan Plains. Within the Prairie Evaporite, there are four main potash-bearing members, in ascending stratigraphic order they are: Esterhazy, White Bear, Belle Plaine and Patience Lake members (Figure 11b). Each member is composed of various combinations of halite, sylvite, sylvinite, and carnallitite, with occurrences of sylvite versus carnallite reliably definable using wireline signatures (once the wireline is calibrated to core or mine control - Figure 12; Fuzesy, 1982).

The Patience Lake Member is the uppermost Prairie Evaporite member and is separated from the Belle Plaine by 3-12 m of barren halite (Holter, 1972). Its thickness ranges from 0-21 m and averages 12 m, its top 7-14 m is made up halite with clay bands and stratiform sylvite. This is the targeted ore unit in conventional mines in the Saskatoon and Lanigan areas and is the solution-mined target, along with the underlying Belle Plaine Member, at the Mosaic Belle Plaine potash facility. The Belle Plaine member is separated from the Esterhazy by the White Bear Marker beds made up of some 15 m of low-grade halite, clay seams and sylvinite. The Belle Plaine Member is more carnallite-prone than the Patience Lake member (Figure 12). It is the ore unit in the conventional mines at Rocanville and Esterhazy (Figure 11b) where its thickness ranges from 0-18 m and averages around 9 m. In total, the Prairie Evaporite Formation does not contain any significant MgSO4 minerals (kieserite, polyhalite etc.) although some members do contain abundant carnallite. This mineralogy indicates precipitation from a Devonian seawater/brine chemistry somewhat different from today’s, with inherently lower relative proportions of sulphate and lower Mg/Ca ratios (Figure 4).

The Prairie Evaporite Fm. is nonhalokinetic throughout the basin, it is more than 200 m thick in the potash mining district in Saskatoon and 140 m thick in the Rocanville area to the southeast (Figure 11a; Yang et al., 2009). The Patience Lake member is the main target for conventional mining near Saskatoon. The Esterhazy potash member rises close to the surface in the southeastern part of Saskatchewan near Rocanville and on into Manitoba. This is a region where the Patience Lake Member is thinner or completely dissolved (Figure 11b). Over the area of mineable interest in the Patience Lake Member, centred on Saskatoon, the ore bed currently slopes downward only slightly in a westerly direction, but deepens more strongly to the south at a rate of 3-9 m/km. Mines near Saskatoon are at depths approaching a kilometre and so are nearing the limits of currently economic shaft mining.

The main shaft for the Colonsay Mine, which took IMC Global Inc. more than five years to complete through a water-saturated sediment column, finally reached the target ore body at a depth of 960 metres. Such depths and a southerly dip to the ore means that the conventional shaft mines near Saskatoon define a narrow WNW-ESE band of conventional mining activity (Figure 11c). To the south potash is recovered from greater depths by solution mining; for example, the Belle Plaine operation leaches potash from the Belle Plaine member at a depth of 1800m.

The Prairie Evaporite typically thins southwards in the basin; although local thickening occurs where carnallite, not sylvite, is the dominant potash mineral (Worsley and Fuzesy, 1979). The Patience Lake member is mined at the Cory, Allan and Lanigan mines, and the Esterhazy Member is mined in the Rocanville area (Figure 11c). Ore mined from the 2.4 m thick Esterhazy Member in eastern Saskatchewan contain minimal amounts of insolubles (≈1%), but considerable quantities of carnallite (typically 1%, but up to 10%) and this reduces the average KCl grade value to an average of 25% K2O. The converse is true for ore mined from the Patience Lake potash member in western Saskatchewan near Saskatoon, where carnallite is uncommon in the Cory and Allan mines. The mined ore thickness is a 2.74-3.35 metre cut off near the top of the 3.66-4.57metre Prairie Lake potash member. Ore grade is 20-26% K2O and inversely related to thickness (Figure 12). The insoluble content is 4-7%, mostly clay and markedly higher than in the Rocanville mines.


A typical sylvinite ore zone in the Patience Lake member can be divided into four to six units, based on potash rock-types and clay seams (Figures 12, 13a; M1-M6 of Boys, 1990). Units are mappable and have been correlated throughout the PCS Cory Mine with varying degrees of success, dependent on partial or complete loss of section from dissolution. Potash deposition appears to have been early and related to short-term brine seaway cooling and syndepositional brine reflux. So the potash layering (M1-M6) is cyclic, expressed in the repetitive distribution of hematite and other insoluble minerals (Figure 13). Desiccation polygons, desiccation cracks, subvertical microkarst pits and chevron halite crystals indicate that the Patience Lake member that encompasses the potash ore was deposited in and just beneath a shallow-brine, salt-pan environment (Figure 13b; Boys, 1990; Lowenstein and Spencer, 1990; Brodlyo and Spencer, 1987; pers. obs).

Clay seams form characteristic thin stratigraphic segregations throughout the potash ore zone(s) of the Prairie Evaporite, as well as disseminated intervals, and constitute about 6% of the ore as mined. For example, the insoluble minerals found in the PCS Cory samples are, in approximate order of decreasing abundance: dolomite, clay [illite, chlorite (including swelling-chlorite/chlorite), and septechlorite, quartz, anhydrite, hematite, and goethite. Clay minerals make up about one-third of the total insolubles: other minor components include: potassium feldspar, hydrocarbons, and sporadic non-diagnostic palynomorphs (Figure 13; Boys, 1990).

In all mines, the clays tend to occur as long continuous seams or marker layers between the potash zones and are mainly composed of detrital chlorite and illite, along withauthigenic septechlorite, montmorillonite and sepiolite (Mossman et al., 1982; Boys, 1990). Of the two chlorite minerals, septechlorite is the more thermally stable. The septechlorite, sepiolite and vermiculite very likely originated as direct products of settle-out, syndepositional dissolution or early diagenesis under hypersaline conditions from a precursor that was initially eolian dust settling to the bottom of a vast brine seaway. The absence of the otherwise ubiquitous septechlorite from Second Red Beds west of the zero-edge of the evaporite basin supports this concept (Figure 9, 10).


Potash Textures

Texturally, at the cm-scale, potash salt beds in the Prairie Evaporite (both carnallitite and sylvinite) lack the lateral continuity seen in primary potash textures in the Oligocene of the Mulhouse Basin (Figure 14). Prairie potash probably first formed as syndepositional secondary precipitates and alteration products at very shallow depths just beneath the sediment surface. These early prograde precipitates were then modified to varying degrees by ongoing fluid flushing in the shallow burial environment. The cyclic depositional distribution of disseminated insolubles as the clay marker beds was possibly due to a combination of source proximity, periodic enrichment during times of brine freshening and the strengthening of the winds blowing detritals out over the brine seaway. Possible intra-potash disconformities, created by dissolution of overlying potash-bearing salt beds, are indicated by an abundance of residual hematite in clay seams with some cutting subvertically into the potash bed. Except in, and near, dissolution levels and collapse features, the subsequent redistribution of insolubles, other than iron oxides, is not significant.

In general, halite-sylvite (sylvinite) rocks in the Prairie Evaporite ore zones generally show two end member textures; 1) the most common is a recrystallised polygonal mosaic texture with individual crystals ranging from millimetres to centimetres and sylvite grain boundaries outlined by concentrations of blood-red halite (Figure 14a). 2) The other end member texture is a framework of euhedral and subhedral halite cubes enclosed by anhedral crystals of sylvite (Figure 14b). This is very similar to ore textures in the Salado Formation of New Mexico interpreted as early passive precipitates in karstic voids.

Petrographically, the halite-carnallite (carnallitite) rocks display three distinct textures. Most halite-carnallite rocks contain isolated centimetre-sized cube mosaics of halite enclosed by poikilitic carnallite crystals (Figure 14c); 1) Individual halite cubes are typically clear, with occasional cloudy crystal cores that retain patches of syndepositional growth textures (Lowenstein and Spencer, 1990). 2) The second texture is coarsely crystalline halite-carnallite with equigranular, polygonal mosaic textures. In zones where halite overlies bedded anhydrite, most of the halite is clear with only the occasional crystal showing fluid inclusion banding.

Bedded halite away from the ore zones generally retains a higher proportion of primary depositional textures typical of halite precipitation in shallow ephemeral saline pans (Figure 14d; Brodylo and Spencer, 1987). Crystalline growth fabrics, mainly remnants of vertically-elongate halite chevrons, are found in 50-90% of the halite from many intervals in the Prairie Evaporite. Many of the chevrons are truncated by irregular patches of clear halite that formed as early diagenetic cements in syndepositional karst.

In contrast, the halite hosting the potash ore layers lacks well-defined primary textures but is dominated by intergrown mosaics. From the regional petrology and the lower than expected Br levels in halite in the Prairie Evaporite Formation, Schwerdtner (1964), Wardlaw and Watson (1966) and Wardlaw (1968) postulated a series of recrystallisation events forming sylvite after carnallite as a result of periodic flushing by hypersaline solutions. This origin as a secondary precipitate (via incongruent dissolution) is supported by observations of intergrowth and overgrowth textures (McIntosh and Wardlaw, 1968), collapse and dissolution features at various scales and timings (Gendzwill, 1978; Warren 2017), radiometric ages (Baadsgaard, 1987) and palaeomagnetic orientations of the diagenetic hematite linings associated with the emplacement of the potash (Koehler, 1997; Koehler et al., 1997).

Dating of clear halite crystals in void fills within the ore levels shows that some of the exceptionally coarse and pure secondary halites forming pods in the mined potash horizons likely precipitated during early burial, while other sparry halite void fills formed as late as Pliocene-Pleistocene (Baadsgard, 1987). Even today, alteration and remobilisation of the sylvite and carnallite and the local precipitation of bischofite are ongoing processes, related to the encroachment of the contemporary dissolution edge or the ongoing stoping of chimneys fed by deep artesian circulation (pers obs.).


Fluid inclusion studies support the notion of primary textures (low formation temperatures in chevron halite in the Prairie evaporite and an associated thermal separation of non-sylvite and sylvite associated halite (Figure 15; Chipley et al., 1990). Most fluid inclusions found in primary, fluid inclusion-banded halite associated with the Prairie potash salts contain sylvite daughter crystals at room temperature or nucleate them on cooling (e.g. halite at 915 and 945 m depth in the Winsal Osler well; Lowenstein and Spencer, 1990). In contrast, no sylvite daughter crystals have been observed in fluid inclusions outlining primary growth textures from chevron halites away from the potash deposits.

The data illustrated as Figure 15 clearly show that inclusion temperatures in primary halite chevrons are cooler than those in halites collected in intervals nearer the potash levels. Sylvite daughter crystal dissolution temperatures from fluid inclusions in the cloudy centres of halite crystals associated with potash salts are generally warmer (Brodlyo and Spencer, 1987; Lowenstein and Spencer, 1990). Sylvite and carnallite daughter crystal dissolution temperatures from fluid inclusions in fluid inclusion banded halite from bedded halite-carnallite are the hottest. This mineralogically-related temperature schism establishes that potash salts occur in stratigraphic intervals in the halite where syndepositional surface brines were warmer. In the 50° - 70°C temperature range there could be overlap with heliothermal brine lake waters. Even so, these warmer potash temperatures imply parent brines would likely be moving via a shallow reflux drive and are not the result of primary bottom nucleation (in contrast to primary sylvite in the Mulhouse Basin). Whether the initial Prairie reflux potash precipitate was sylvite or carnallite is open to interpretation (Lowenstein and Hardie, 1990).


Fluid evolution from mineral and isotope chemistry

Analysis of subsurface waters from various Canadian potash mines and collapse anomalies in the Prairie Evaporite suggest that, after initial potash precipitation, a series of recrystallising fluids accessed the evaporite levels at multiple times throughout the burial history of the Prairie Formation (Chipley, 1995; Koehler, 1997; Koehler et al., 1997). Likewise, the isotope systematics and K-Ar ages of sylvite in both halite and sylvite layers indicate that the Prairie Evaporite was variably recrystallised during fluid overprint events (Table 2; Figure 16). These event ages are all younger than original deposition (≈390Ma) and likely correspond to ages of various tectonic events that influenced subsurface hydrology along the western margin of North America.


Chemical compositions of inclusion fluids in the Prairie Evaporite, as determined by their thermometric properties, reveal at least two distinct waters played a role in potash formation: a Na-K-Mg-Ca-Cl brine, variably saturated with respect to sylvite and carnallite; and a Na-K-Cl brine (Horita et al., 1996). That is, contemporary inclusion water chemistry is a result in part of ongoing fluid-rock interaction. The ionic proportions in some halite samples are not the result of simple evaporation of seawater to the sylvite bittern stage (Figure 17a; Horita et al., 1996). There is a clear separation of values from chevron halites in samples from the Lanigan and Bredenbury (K-2 area) mines, which plot closer to the concentration trend seen in halite from modern seawater and values from clear or sparry halite. The latter encompass much lower K and higher Br related to fractionation tied to recrystallisation. Likewise, the influence of ongoing halite and potash salt dissolution is evident in the chemistry of shaft and mine waters with mine level waters showing elevated Mg and K values, (Figure 17b; Wittrup and Kyser, 1990; Chipley, 1995). What is more the mine waters of today show  substantial overlap with waters collected more than thirty years ago (Jensen et al., 2006)


This notion of ongoing fluid-rock interaction controlling the chemistry of mine waters is supported by dD and d18O values of inclusion fluids in both halite and sylvite, which range from -146 to 0‰ and from -17.6 to -3.0‰, respectively (Figure 18). Most of the various preserved isotope values are different from those of evaporated seawater, which should have dD and d18O values near 0‰.

Furthermore, the dD and d18O values of inclusion fluids are probably not the result of precipitation of the evaporite minerals from a brine that was a mixture of seawater and meteoric water. The low latitude position of the basin during the Middle Devonian (10-15° from the equator), the required lack of meteoric water to precipitate basinwide evaporites, and the expected dD and d18O values of any meteoric water in such a setting, make this an unlikely explanation. Rather, the dD and d18O values of inclusion fluids in the halites reflect ambient and evolving brine chemistries as the fluids in inclusions in the various growth layers were intermittently trapped during the subsurface evolution of the Prairie Formation in the Western Canada Sedimentary Basin. They also suggest that periodic migration of nonmarine subsurface water was a significant component of the crossflowing basinal brines throughout much of the recrystallisation history (Chipley, 1995).

Prairie carnallite-sylvite alteration over time

Ongoing alteration of carnallite to sylvite and the reverse reaction means a sylvite-carnallite bed must be capable of gaining or losing fluid at the time of alteration. That is, any reacting potash beds must be permeable at the time of the alteration. By definition, there must be fluid egress to drive incongruent alteration of carnallite to sylvite or fluid ingress to drive the alteration of sylvite to carnallite. There can also be situations in the subsurface where the volume of undersaturated fluid crossflow was sufficient to remove (dissolve) significant quantities of the more soluble evaporite salts. Many authors looking at the Prairie evaporite argue that the fluid access events during the alteration of carnallite to sylvite or the reverse, or the complete leaching of the soluble potash salts was driven by various tectonic events (Figure 16). In the early stages of burial alteration (few tens of metres from the landsurface) the same alteration processes can be driven by varying combinations of brine reflux, prograde precipitation and syndepositional karstification, all driven by changes in brine level and climate, which in turn may not be related to tectonism (Warren, 2016; Chapters 2 and 8 for details).

In the potash areas of the Western Canada Sedimentary Basin, the notion of 10-100 km lateral continuity is a commonly stated precept for both sylvinite and carnallitite units across the extent of the Prairie Evaporite. But when the actual distribution and scale of units are mapped based on mined intercepts, there are numerous 10-100 metre-scale discontinuities (anomalies) present indicating fluid ingress or egress (Warren, 2017).


Sometimes ore beds thin and alteration degrades the ore level (Section A-A1-A2), other times these discontinuities can locally enrich sylvite ore grade (B-B1; Figure 19). Discontinuities or salt anomalies are much more widespread in the Prairie evaporite than mentioned in much of the potash literature (Figure 19). Mining for maintenance of ore grade shows that unexpectedly intersecting an anomaly in a sylvite ore zone can have a range of outcomes ranging from the inconsequential to the catastrophic, in part because there is more than one type of salt anomaly or “salt horse" (Warren, 2017).


Figure 20 summarises what are considered the three most common styles of salt anomaly in the sylvite ore beds of the Prairie Evaporite, namely 1) Washouts, 2) Leach anomalies, 3) Collapse anomalies. These ore bed disturbances and their occurrence styles are in part time-related. Washouts are typically early (eogenetic) and defined as... “salt-filled V- or U-shaped structures, which transect the normal bedded sequence and obliterate the stratigraphy” (Figure 20a; Mackintosh and McVittie, 1983, p. 60). They are typically enriched in, or filled by, insoluble materials in their lower one-third and medium-coarse-grained sparry halite in the upper two thirds. Up to several metres across, when traced laterally they typically pass into halite-cemented paleo-sinks and cavern networks (e.g. Figure 20b). Most washouts likely formed penecontemporaneous to the potash beds they transect, that is, they are preserved examples of synkarst, with infilling of the karst void by a slightly later halite cement. They indicate watertable lowering in a potash-rich saline sump. This leaching was followed soon after by a period of higher watertables and brine saturations, when halite cements occluded the washouts and palaeocaverns. Modern examples of this process typify the edges of subcropping and contemporary evaporite beds, as about the recently exposed edges of the modern Dead Sea. As such, “washouts” tend to indicate relatively early interactions of the potash interval with undersaturated waters, they may even be a part of the syndepositional remobilisation hydrology that focused, and locally enriched, potash ore levels.

In a leach anomaly zone, the stratabound sylvinite ore zone has been wholly or partially replaced by barren halite, without significantly disturbing the normal stratigraphic sequence (clay marker beds) which tend to continue across the anomaly (Figure 20b). Some loss of volume or local thinning of the stratigraphy is typical in this type of salt anomaly. Typically saucer-shaped, they have diameters ranging from a few metres up to 400m. Less often, they can be linear features that are up to 20 m wide and 1600m long. Leach zones can form penecontemporaneously due to depressions and back-reactions in the ore beds, or by later low-energy infiltration of Na-saturated, K-undersaturated brines. The latter method of formation is also likely on the margins of collapse zones, creating a hybrid situation typically classified as a leach-collapse anomaly (Mackintosh and McVittie, 1983; McIntosh and Wardlaw, 1968).

Of the three types of salt anomaly illustrated, leach zone processes are the least understood. Historically, when incongruent dissolution was the widely accepted interpretation for loss of unit thickness in the Prairie Evaporite, many leach anomalies were considered metasomatic. Much of the original metasomatic interpretation was based on decades of detailed work in the various salt mines of the German Zechstein Basin. There, in an endemic halokinetic terrane, evaporite textures were considered more akin to metamorphic rocks, and the term metasomatic alteration was commonly used when explaining leach anomalies (Bochert and Muir, 1964, Braitsch, 1971). In the past two decades, general observations of the preservation of primary chevron halite in most bedded evaporites away from the potash layers in the Prairie Evaporite have led to reduced use of notions of widespread metamorphic-like metasomatic or solid-state alteration processes in bedded evaporites. There is just too much preserved primary texture in the bedded salt units adjacent to potash beds to invoke pervasive burial metasomatism of the Prairie Evaporite.


So how do leach anomalies, as illustrated in Figure 20b, occur in nonhalokinetic settings? One possible explanation is given by the depositional textures documented in anomalies in the Navarra Potash Province (Figure 21). There, the underlying and overlying salt stratigraphy is contiguous, while the intervening sylvite passed laterally into a syndepositional anomaly or “salt horse” created by an irregular topography on the salt pan floor prior to the deposition of onlapping primary sylvinite layers (see Warren 2016, 2017 for detailed discussion)

On the other hand, in halokinetic situations (which characterises much Zechstein salt) solid-state alteration via inclusion related migration in flowing salt beds is a well-documented set of texture-altering processes (diffusion metasomatism). Most workers in such halokinetic systems would agree that there must have been an original stratiform potassium segregation present during or soon after deposition related to initial precipitation, fractional dissolution and karst-cooling precipitation. But what is controlling potassium distribution now in the Zechstein salts is a recrystallised and remobilised set of textures, which preserve little or no crystal-scale evidence of primary conditions (Warren, 2016; Chapter 6). The complex layering in such deposits may preserve a broad depositional stratigraphy, but the decimetre to metre scale mineral distributions are indications of complex interactions of folds, overfolds, and disaggregation with local flow thickening. We shall return to this discussion of Zechstein potash textures in the next section dealing with devolatisation of hydrated salts such as carnallite. in zones of local heating

Collapse zones in the Prairie Evaporite are characterized by a loss of recognizable sylvinite ore strata, which is replaced by less saline brecciated, recemented and recrystallized material, with the breccia blocks typically made of the intrasalt or roof lithologies (Figure 20c), so angular fragments of the Second Red beds and dolostones of the Dawson Bay Formation are the most conspicuous components of the collapse features in the Western Canada Sedimentary Basin. When ore dissolution is well developed, all the halite can dissolve, along with the potash salts, and the overlying strata collapse into the cavity (these are classic solution collapse features). Transitional leached zones typically separate the collapsed core from normal bedded potash. Such collapse structures indicate a breach of the ore layers by unsaturated waters, fed either from below or above. For example, in the Western Canada Sedimentary Basin, well-developed collapse structures tend to occur over the edges and top Devonian mud mounds, while in the New Mexico potash zone the collapse zones are related to highs in the underlying Capitan reef trend (Warren, 2017). Leaching fluids may have come from below or above to form collapse structures at any time after initial deposition. When connected to a water source, these are the subsurface features that when intersected can quickly move the mining operation out of the salt into an adjacent aquifer system, a transition that led to flooding in most of the mine-lost operations listed earlier.

Identifying at the mine scale the set of processes that created a salt anomaly in a sylvite bed also has implications in terms of its likely influence on mine stability whatever decision is made on how to deal with it as part of the ongoing mine operation (Warren, 2016, 2017). Syndepositional karst fills and leach anomalies are least likely to be problematic if penetrated during mining, as the aquifer system that formed them is likely no longer active. In contrast, penetration or removal of the region around a salt-depleted collapse breccia may lead to uncontrollable water inflows and ultimately to the loss of the mine.

Unfortunately, in terms of production planning, the features of the periphery of a leach anomaly can be similar if not identical to those in the alteration halo that typically forms about the leached edge a collapse zone. The processes of sylvite recrystallisation that define the edge of collapse anomaly can lead to local enrichment in sylvite levels, making these zones surrounding the collapse core attractive extraction targets (Boys 1990, 1993). Boundaries of any alteration halo about a collapse centre are not concentric, but irregular, making the prediction of a feature’s geometry challenging, if not impossible. The safest course of action is to avoid mining salt anomalies, but longwall techniques make this difficult and so they must be identified and dealt with (see Warren 2017).


Cooking sylvite: Dykes & sills in potash salts

 

In addition to; 1) primary sylvite and 2) sylvite/carnallite alteration via incongruent transformation in burial, there is a third mode of sylvite formation related to 3) igneous heating driving devolatisation of carnallitite, which can perhaps be considered a form of incongruent melting (Warren, 2016). And so, at a local scale (measured in metres to tens of metres) in potash beds cut by igneous intrusions, there are a number of documented thermally-driven alteration styles and thermal haloes. Most are created by the intrusion of hot doleritic or basaltic dykes and sills into cooler salt masses, or the outflow of extrusive igneous flows over cooler salt beds (Knipping, 1989; Grishina et al, 1992, 1998; Gutsche, 1988; Steinmann et al., 1999; Wall et al., 2010). Hot igneous material interacts with somewhat cooler anhydrous salt masses to create narrow, but distinct, heat and mobile fluid-release envelopes, also reflected in the resulting salt textures. At times, relatively rapid magma emplacement can lead to linear breakout trends outlined by phreatomagmatic explosion craters, as imaged in portions of the North Sea (Wall et al., 2010) and the Danakhil/Dallol potash beds in Ethiopia (Salty Matters, May 1, 2015).

Based on studies of inclusion chemistry and homogenization temperatures in fluid inclusions in bedded halite near intrusives, it seems that the extent of the influence of a dolerite sill or dyke in bedded salt is marked by fluid-inclusion migration, evidenced by the disappearance of chevron structures and consequent formation of clear halite with a different set of higher-temperature inclusions. Such a migration envelope is well documented in bedded Cambrian halites intruded by end-Permian dolerite dykes in the Tunguska region of Siberia (Grishina et al., 1992).

Defining h as the thickness of the dolerite intrusion in these salt beds, and d as the distance of the halite from the edge of the intrusion, then the disappearance of chevrons occurs at greater distances above than below the intrusive sill. For d/h < 0.9 below the intrusion, CaCl2, CaCl2, KCl and nCaCl2, mMgCl2 solids occur in association with water-free and liquid-CO2 inclusions, with H2S, SCO and orthorhombic or glassy S8. For a d/h of 0.2-2 above the intrusion, H2S-bearing liquid-CO2 inclusions are typical, with various amounts of water. Thus, as a rule of thumb, an alteration halo extends up to twice the thickness of the dolerite sill above the sill and almost the thickness of the sill below (Figure 22).

In a series of autoclavation laboratory experiments, Fabricius and Rose-Hampton (1988) found that; 1) at atmospheiric pressure carnallite melts incongruently to sylvite and hydrated MgCl2 at a temperature of 167.5°C. 2) the melting/transformation temperature increase to values in excess of 180°C as the pressure increases (Figure 23).


A similar situation occurs in the dyke-intruded halite levels exposed in the mines of the Werra-Fulda district of Germany (Steinmann et al., 1999; Schofield, et al., 2014). There the Herfa-Neurode potash mine is located in the Werra-Fulda Basin in the Hessian district of central Germany (Figure 24a). The targeted ore levels consist of the carnallite-rich Kaliflöz Hessen (K1H) and Kaliflöz Thüringen (K1Th) intervals, which form part of the Zechstein 1 (Z1) bedded Werra salt succession (Warren, 2016). In the mine the K1H and K1Th units range in thickness from 2 m to 10 m, are generally subhorizontal and occur at a depth of 650–710 m below the present-day surface.


In the later Tertiary, basaltic melts intruded these Zechstein evaporites as numerous sub-vertical dykes, but only a few dykes attained the Miocene landsurface. Basaltic melt production was related to regional volcanic activity some 10 to 25 Ma. Basalts exposed in the mine walls, where it cuts non-hydrous units of halite or anhydrite, are typically subvertical dykes, rather than subhorizontal sills. The basalts are phonolitic tephrites, limburgites, basanites and olivine nephelinites. Dyke margins are usually vitrified, forming a microlitic limburgite glass along dyke edges in contact with halite (Figure 24b; Knipping, 1989). At the contact on the evaporite side of the glassy rim, there is a cm-wide carapace of high-temperature salts (mostly anhydrite and ferroan carbonates). Further out, the effect of the high-temperature envelope is denoted by transitions to clear halite, with higher temperature fluid inclusions (Knipping 1989). All of this metre-scale alteration is an anhydrous alteration halo, the halite did not melt (melting temperature of 804°C), rather than migrating, the fluid driving recrystallisation was mostly from entrained brine/gas inclusions. The dolerite/basalt interior of the basaltic dyke is likewise altered and salt soaked, with clear, largely inclusion-free halite typically filling vesicles in the basalt.

Heating of hydrated (carnallitic) salt layers, adjacent to a dyke or sill, tends to drive off the water of crystallisation (chemical or hydration thixotropy) at much lower temperatures than that at which anhydrous salts, such as halite or anhydrite, thermally melt (Figure 24c; Table 3). For example, in the Fulda region, the thermally-driven release of water of crystallisation within carnallitic beds creates thixotropic or subsurface “peperite” textures as carnallitite alters to sylvinite layers. These are layers where heated water of crystallisation escaped from the hydrated-salt lattice. Dehydration-driven loss of mechanical strength focuses zones of magma entry into particular subhorizontal horizons in the salt mass, wherever hydrated salt layers were present. In contrast, dyke and sill margins are much sharper and narrower in zones of contact with anhydrous salt intervals and the intrusive is sub-vertical to steeply dipping (Figure 24b versus 24c).

Accordingly, away from the immediate vicinity of the direct thermal aureole, heated and overpressured dehydration waters can enter carnallite halite bed, and drive the creation of extensive soft sediment deformation and peperite textures in hydrated layer (Figure 24c). Mineralogically, sylvite and coarse recrystallised halite dominate the salt fraction in the peperite intervals of the Herfa-Neurode mine. Sylvite in the altered zone is a form of dehydrated carnallite, not a primary-textured salt. Across the Fulda region, such altered zones and deformed units can extend along former carnallite layer to tens or even a hundred or more metres from the dyke feeder. Ultimately, the deformed potash bed passes back out into the unaltered bed, which retains abundant inclusion-rich halite and carnallite (Schofield et al., 2014).

That is, nearer the basalt dyke, the carnallite is largely transformed into inclusion-poor halite and sylvite, the result of incongruent flushing of warm saline fluids mobilised from the hydrated carnallite crystal lattice as it was heated by dyke emplacement. During Miocene salt alteration/thermal metamorphism in the Fulda region, NaCl-fluids were mixed with fluids and gases originating from thermally-mobilised crystallisation water in the carnallite, as it converted to sylvite. This brine/gas mixture altered the basalts during post-intrusive cooling, an event which numerical models suggest was quite rapid (Knipping, 1989): a dyke of less than 0.5 m thickness probably cooled to temperatures less than 200°C within 14 days of dyke emplacement.

The contrast in alteration extent between anhydrous and hydrous salt layers shows alteration effects are minimal wherever the emplacement temperature of the magma is below that of the anhydrous salt body as it is next to a basalt dyke. If this is the mechanism driving entry of igneous-related volatiles (gases and liquids) into a salt body, then the distribution of products (including CO2) will be highly inhomogeneous and related to the minerally of the salt unit adjacent to the intrusive. Worldwide, dykes intersecting salt beds tend to widen to become sills in two zones: 1) along evaporite units within the halite mass that contain hydrated salts, such as carnallite or gypsum (Figure 24c) and, 2) where rising magma has ponded and so created laccoliths at the upper or lower halite contact with the adjacent nonsalt strata or against a salt wall (Figure 22 vs 24). The first is a response to a pulse of released water as dyke-driven heating forces the dehydration of hydrated salt layers. The second is a response to the mechanical strength contrast at the salt-nonsalt contact.

In summary, sylvite formed from a carnallite precursor during Miocene salt alteration/thermal metamorphism in the Fulda region, NaCl-fluids were mixed with fluids originating from thermally-mobilised crystallisation water in the carnallite, as it converted to sylvite. This brine mixture altered the basalts during post-intrusive cooling, an event which numerical models suggest was quite rapid (Knipping, 1989): a dyke of less than 0.5 m thickness probably cooled to temperatures less than 200°C within 14 days of dyke emplacement.

How do we produce potash salts?

 

Over this series of three articles focused on current examples of potash production, we have seen there are two main groups of potash minerals currently utilised to make fertiliser, namely, muriate of potash (MOP) and sulphate of potash (SOP). MOP is both mined (generally from a Pre-Neogene sylvinite ore) or produced from brine pans (usually via processing of a carnallitite slurry). In contrast, large volumes of SOP are today produced from brine pans in China and the USA but with only minor production for solid-state ore targets. Historically, SOP was produced from solid-state ores in Sicily, the Ukraine, and Germany but today there are no conventional mines with SOP as the prime output in commercial operation (See Salty Matters, May 12, 2015).

The MgSO4-enriched chemistry of modern seawater makes the economic production of potash bitterns from a seawater-feed highly challenging. Today, there is no marine-fed plant anywhere in the world producing primary sylvite precipitates. However, sylvite is precipitating from a continental brine feed in salt pans on the Bonneville salt flat, Utah. There, a brine field, drawing shallow pore waters from saltflat sediments, supplies suitably low-MgSO4 inflow chemistry to the concentrator pans. Sylvite also precipitates in solar evaporator pans in Utah that are fed brine circulated through the abandoned workings of the Cane Creek potash mine (Table 1).

Large-scale production of MOP fertiliser from potash precipitates created in solar evaporation pans is taking place in perennially subaqueous saline pans of the southern Dead Sea and the Qaidam Basin. In the Dead Sea, the feed brine is pumped from the waters of the northern Dead Sea basin, while in the Qaidam sump the feed is from a brine field drawing pore brines with an appropriate mix of river and basinal brine inputs. In both cases, the resulting feed brine to the final concentrators is relatively depleted in magnesium and sulphate. These source bitterns have ionic proportions not unlike seawater in times of ancient MgSO4-depleted oceans. Carnallitite slurries, not sylvinite, are the MOP precipitates in pans in both regions. When feed chemistry of the slurry is low in halite, then the process to recover sylvite is a cold crystallisation technique. When halite impurity levels in the slurry are higher, sylvite is manufactures using a more energy intensive, and hence more expensive, hot crystallisation technique. Similar sulphate-depleted brine chemistry is used in Salar Atacama, where MOP and SOP are recovered as byproducts of the production of lithium carbonate brines.

Significant volumes of SOP are recovered from a combination of evaporation and cryogenic modification of sulfate-enriched continental brines in pans on the edge of the Great Salt Lake, Utah, and Lop Nur, China. When concentrated and processed, SOP is recovered from the processing of a complex series of Mg-K-SO4 double salts (schoenitic) in the Odgden pans fed brines from the Great Salt Lake. The Lop Nur plant draws and concentrates pore waters from a brine field drawing waters from glauberite-polyhalite-entraining saline lake sediments.

All the Quaternary saline lake factories supply less than 20% of the world's potash; the majority comes from the conventional mining of sylvinite ores. The world's largest reserves are held in Devonian evaporites of the Prairie Evaporite in the Western Canada Sedimentary Basin. Textures and mineral chemistry show that the greater volume of bedded potash salts in this region is not a primary sylvite precipitate. Rather the ore distribution, although stratiform and defined by a series of clay marker beds, actually preserves the effects of multiple modifications and alterations tied to periodic egress and ingress of basinal waters. Driving mechanisms for episodes of fluid crossflow range from syndepositional leaching and reflux through to tectonic pumping and uplift (telogenesis). Ore distribution and texturing reflect local-scale (10-100 metres) discontinuities and anomalies created by this evolving fluid chemistry. Some alteration episodes are relatively benign in terms of mineralogical modification and bed continuity. Others, generally tied to younger incidents (post early Cretaceous) of undersaturated crossflow and karstification, can have substantial effects on ore continuity and susceptibility to unwanted fluid entry. In contrast, ore textures and bed continuity in the smaller-scale sylvinite ores in the Oligocene Mulhouse Basin, France, indicate a primary ore genesis.

What makes it economic?

Across the Quaternary, we need a saline lake brine systems with the appropriate brine proportions, volumes and climate to precipitate the right association of processable potash salts. So far, the price of potash, either MOP or SOP, and the co-associated MgSO4 bitterns, precludes industrial marine-fed brine factories.

In contrast, to the markedly nonmarine locations of potash recovery from the Quaternary sources, almost all pre-Quaternary potash operations extract product from marine-fed basinwide ore hosts during times of MgSO4-depleted and MgSO4-enriched oceans (Warren, 2016; Chapter 11). This time-based dichotomy in potash ore sources with nonmarine hosts in the Quaternary deposits and marine evaporite hosted ore zones in Miocene deposits and older, reflects a simple lack of basinwide marine deposits and appropriate marine chemistry across the Neogene (Warren, 2010). As for all ancient marine evaporites, the depositional system that deposited ancient marine-fed potash deposits was one to two orders of magnitude larger and the resultant deposits were typically thicker stacks than any Quaternary potash settings. The last such “saline giant” potash system was the Solfifera series in the Sicilian basin, deposited as part of the Mediterranean “salinity crisis,” but these potential ore beds are of the less economically attractive MgSO4- enriched marine potash series.

So, what are the factors that favour the formation of, and hence exploration for, additional deposits of exploitable ancient potash? First, large MOP solid-state ore sources are all basinwide, not lacustrine deposits. Within the basinwide association, it seems that intracratonic basins host significantly larger reserves of ore, compared to systems that formed in the more tectonically-active plate-edge rift and suture association. This is a reflection of: 1) accessibility – near the shallow current edge of a salt basin, 2) a lack of a halokinetic overprint and, 3) the setup of longterm, stable, edge-dissolution brine hydrologies that typify many intracratonic basins. Known reserves of potash in the Devonian Prairie evaporite in West Canadian Sedimentary Basin (WCSB) are of the order of 50 times that of next largest known deposit, the Permian of the Upper Kama basin, and more than two orders of magnitude larger than any other of the other known exploited deposits (Table 1).

Part of this difference in the volume of recoverable reserves lies in the fact that the various Canadian potash members in the WCSB are still bedded and flat-lying. Beds have not been broken up or steepened, by any subsequent halokinesis. The only set of processes overprinting and remobilising the various potash salts in the WCSB are related to multiple styles and timings of aquifer encroachment on the potash units, and this probably took place at various times since the potash was first deposited, driven mainly by a combination of hinterland uplift and subrosion. In contrast, most of the other significant potash basins listed in Table 10 have been subjected to ongoing combinations of halokinesis and groundwater encroachments, making these beds much less laterally predictable. In their formative stages, the WCSB potash beds were located a substantial distance from the orogenic belt that drove flexural downwarp and creation of the subsealevel sag depression. Like many other intracratonic basins, the WCSB did not experience significant syndepositional compression or rift-related loading.

References

Adamo, S., 1992, The Sicilian rock salt and potash mines: Mining Magazine, v. 166, p. 277-283.

Adams, S. S., 1970, Ore controls, Carlsbad potash district, southeast New Mexico, in J. L. Rau, and L. F. Dellwig, eds., Third Symposium on Salt, v. 1: Cleveland, Ohio, Northern Ohio Geological Society, p. 246-257.

Baadsgaard, H., 1987, Rb-Sr and K-Ca isotope systematics in minerals from potassium horizons in the Prairie Evaporite Formation, Saskatchewan, Canada: Chemical Geology, v. 66, p. 1-15.

Baar, C. A., 1974, Geological problems in Saskatchewan potash mining due to peculiar conditions during deposition of Potash Beds, in A. H. Coogan, ed., Fourth Symposium on Salt, v. 1: Cleveland, Ohio, North Ohio Geological Society, p. 101-118.

Bastow, I. D., A. D. Booth, G. Corti, D. Keir, C. Magee, C. A.-L. Jackson, J. Warren, J. Wilkinson, and M. Lascialfari, 2018, The development of late-stage continental breakup: Seismic reflection and borehole evidence from the Danakil Depression, Ethiopia: Tectonics, v. 37.

Bingham, C. P., 1980, Solar production of potash from brines of the Bonneville Salt Flats, in J. W. Gwynn, ed., Great Salt Lake; a scientific, history and economic overview. , v. 116, Bulletin Utah Geological and Mineral Survey, p. 229-242.

Blanc-Valleron, M.-M., and M. Schuler, 1997, The Salt Basins of Alsace (Southern Rhine Graben), in G. Busson, and B. C. Schreiber, eds., Sedimentary Deposition in Rift and Foreland Basins in France and Spain (Paleogene and Lower Neogene): New York, Columbia University Press, p. 95–135.

Blanc-Valleron, M. M., 1991, Les formations paléogènes évaporitiques du bassin potassique de Mulhouse et des bassins plus septentrion aux d'Alsace (Document BRGM, 204), Université Louis Pasteur, Paris, 350 p.

Borchert, H., and R. O. Muir, 1964, Salt deposits-The origin, metamorphism and deformation of evaporites: London, D. Van Nostrand Co., Ltd., 338 p.

Boys, C., 1990, The geology of potash deposits at PCS Cory Mine, Saskatchewan: Master's thesis, University of Saskatchewan; Saskatoon, SK; Canada, 225 p.

Boys, C., 1993, A geological approach to potash mining problems in Saskatchewan, Canada: Exploration & Mining Geology, v. 2, p. 129-138.

Braitsch, O., 1971, Salt Deposits: Their Origin and Compositions: New York, Springer-Verlag, 297 p.

Brodylo, L. A., and R. J. Spencer, 1987, Depositional environment of the Middle Devonian Telegraph Salts, Alberta, Canada: Bulletin Canadian Petroleum Geology, v. 35, p. 186-196.

Cendon, D. I., C. Ayora, J. J. Pueyo, and C. Taberner, 2003, The geochemical evolution of the Catalan potash subbasin, South Pyrenean foreland basin (Spain): Chemical Geology, v. 200, p. 339-357.

Cendon, D. I., C. Ayora, J. J. Pueyo, C. Taberner, and M. M. Blanc-Valleron, 2008, The chemical and hydrological evolution of the Mulhouse potash basin (France): Are "marine" ancient evaporites always representative of synchronous seawater chemistry?: Chemical Geology, v. 252, p. 109-124.

Cendon, D. I., C. Ayora, and J. P. Pueyo, 1998, The origin of barren bodies in the Subiza potash deposit, Navarra, Spain - Implications for sylvite formation: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 68, p. 43-52.

Cheng, H. D., Q. Y. Hai, H. Z. Ma, X. Y. Zhang, Q. L. Tang, Q. S. Fan, Y. S. Li, and W. L. Miao, 2016, Implications for the origin of secondary sylvite from a simulation of carnallite dissolution: Journal of Geochemical Exploration, v. 165, p. 189-198.

Cheng, H. D., H. Z. Ma, Q. Y. Hai, Z. H. Zhang, L. M. Xu, and G. F. Ran, 2015, Model for the decomposition of carnallite in aqueous solution: Int. J. Miner. Process., v. 139, p. 36-42.

Chipley, D., and T. K. Kyser, 1991, Large scale fluid movement in the Western Canadian sedimentary basin as recorded by fluid inclusions in evaporites, in J. E. Christopher, and F. M. Haidl, eds., Sixth international Williston Basin symposium, v. 6, Special Publication Saskatchewan Geological Society, p. 265-269.

Chipley, D., T. K. Kyser, and T. Danyluk, 1990, Fluid flow events in the Elk Point Baain of western Canada as recorded in evaporite minerals: Summary of Investigations 1990, Saskatchewan Geological Survey; Saskatchewan Energy and Mines, Miscellaneous Report, p. 211-217.

Chipley, D. B. L., 1995, Fluid history of the Saskatchewan sub-basin of the western Canada sedimentary basin: Evidence from the geochemistry of evaporites: Doctoral thesis, University of Saskatchewan.

Chipley, D. B. L., and T. K. Kyser, 1989, Fluid inclusion evidence for the deposition and diagenesis of the Patience Lake Member of the Devonian Prairie Evaporite Formation, Saskatchewan, Canada: Sedimentary Geology, v. 64, p. 287-295.

de Ruiter, P. A. C., 1979, The Gabon and Congo basins salt deposits: Economic Geology, v. 74, p. 419-431.

Dong, Z., P. Lv, G. Qian, X. Xia, Y. Zhao, and G. Mu, 2012, Research progress in China's Lop Nur: Earth-Science Reviews, v. 111, p. 142-153.

Duan, Z. H., and W. X. Hu, 2001, The accumulation of potash in a continental basin: the example of the Qarhan Saline Lake, Qaidam Basin, West China: European Journal of Mineralogy, v. 13, p. 1223-1233.

Eatock, W. H., 1987, The Big Quill Lake sulphate of potash project, in C. F. Gilboy, and L. W. Vigrass, eds., Economic Minerals of Saskatchewan, Proceedings of a Symposium Held in Regina, Saskatchewan 17 & 18 November 1986, : Saskatchewan Geological Society Special Publication Number 8, p. 206–210.

El Tabakh, M., C. Utha-Aroon, and B. C. Schreiber, 1999, Sedimentology of the Cretaceous Maha Sarakham evaporites in the Khorat Plateau of northeastern Thailand: Sedimentary Geology, v. 123, p. 31-62.

Emons, H., and H. Voigt, 1981, Untersvchungen zur kalten zersetzunung von Carnallit.: Freiberg Forschungsher, v. A628, p. 69-78.

Evans, R., 1970, Genesis of sylvite- and carnallite-bearing rocks from Wallace, Nova Scotia: Third Symposium on Salt, v. 1, p. 239-245.

 

Fabricius, J., and Rose-Hansen, J., 1988, Pressure-dependent melting curve of natural carnallite, KMgCl3.6H2O, in a closed system where evaporation is prevented. IX Symposium on Fluid Inclusions, 4-6 May, 1987, Oporto, Portugal.

 

Fuzesy, A., 1982, Potash in Saskatchewan: Report, Saskatchewan Department of Mineral Resources, v. 181, 45 p.

Garrett, D. E., 1995, Potash: Deposits, processing, properties and uses: Berlin, Springer, 752 p.

Garrett, D. E., 2004, Handbook of Lithium and natural Calcium Chloride; Their deposits, processing, uses and properties Amsterdam, Elsevier Academic Press, 476 p.

Gendzwill, D. J., 1978, Winnipegosis mounds and Prairie Evaporite Formation of Saskatchewan – seismic study: Bulletin American Association Petroleum Geologists, v. 62, p. 73-86.

Grishina, S., J. Dubessy, A. Kontorovich, and J. Pironon, 1992, Inclusions in salt beds resulting from thermal metamorphism by dolerite sills (eastern Siberia, Russia): European Journal of Mineralogy, v. 4, p. 1187-1202.

Grishina, S., J. Pironon, M. Mazurov, S. Goryainov, A. Pustilnikov, G. Fonderflaas, and A. Guerci, 1998, Organic inclusions in salt - Part 3 - Oil and gas inclusions in Cambrian evaporite deposits from east Siberia - A contribution to the understanding of nitrogen generation in evaporite: Organic Geochemistry, v. 28, p. 297-310.

Gutsche, A., 1988, Mineralreaktionen und Sto€transporte an einem Kontakt Basalt-Hartsalz in der Werra-Folge des Werkes Hattorf: Unpubl. diploma thesis, thesis, Georg-August-Universita, Gottingen.

Hardie, L. A., 1984, Evaporites: Marine or non-marine?: American Journal of Science, v. 284, p. 193-240.

Hardie, L. A., 1990, The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis: American Journal of Science, v. 290, p. 43-106.

Hinsken, S., K. Ustaszewski, and A. Wetze, 2007, Graben width controlling syn-rift sedimentation: the Palaeogene southern Upper Rhine Graben as an example: International Journal of Earth Sciences, v. 96, p. 979-1002.

Hite, R. J., 1961, Potash-bearing evaporite cycles in the salt anticlines of the Paradox Basin, Colorado and Utah; Article 337: U. S. Geological Survey Professional Paper. p. D323-D327.

Hite, R. J., and T. Japakasetr, 1979, Potash deposits of the Khorat Plateau, Thailand and Laos: Economic Geology, v. 74, p. 448-458.

Hofmann, P., A. Y. Huc, B. Carpentier, P. Schaeffer, P. Albrecht, B. Keely, J. R. Maxwell, D. J. S. Sinninghe, L. J. W. de, and D. Leythaeuser, 1993a, Organic matter of the Mulhouse Basin, France; a synthesis: Organic Geochemistry, v. 20, p. 1105-1123.

Hofmann, P., D. Leythaeuser, and B. Carpentier, 1993b, Palaeoclimate controlled accumulation of organic matter in Oligocene evaporite sediments of the Mulhouse Basin: Organic Geochemistry, v. 20, p. 1125-1138.

Holser, W. T., 1979, Trace elements and isotopes in evaporites in R. G. Burns, ed., Marine Minerals, v. 6, Reviews in Mineralogy, p. 295-346.

Holt, N. M., J. García-Veigas, T. K. Lowenstein, P. S. Giles, and S. Williams-Stroud, 2014, The major-ion composition of Carboniferous seawater: Geochimica et Cosmochimica Acta, v. 134, p. 317-334.

Holter, M., 1972, Geology of the Prairie Evaporite Formation of Saskatchewan, Canada, Geology of saline deposits (Geologie des depots salins), v. 7, UNESCO Earth Sci. Ser., p. 183-189.

Holwerda, J. G., and R. W. Hutchinson, 1968, Potash-bearing evaporites in the Danakil area, Ethiopia: Economic Geology, v. 63, p. 124-150.

Hong, X. L., S. P. Xia, and S. Y. Gao, 1994, Dissolution kinetics of carnallite (in Chinese with English abstract). Chin. J. Appl. Chem., v. 11, p. 26-31.

Horita, J., A. Weinberg, N. Das, and H. Holland, 1996, Brine inclusions in halite and the origin of the Middle Devonian Prairie evaporites of western Canada: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 66, p. 956-954.

Hryniv, S. P., B. V. Dolishniy, O. V. Khmelevska, A. V. Poberezhskyy, and S. V. Vovnyuk, 2007, Evaporites of Ukraine: a review: Geological Society, London, Special Publications, v. 285, p. 309-334.

Jensen, G. K. S., B. J. Rostron, M. J. M. Duke, and C. Holmden, 2006, Bromine and stable isotopic profiles of formation waters from potash mine-shafts, Saskatchewan, Canada: Journal of Geochemical Exploration, v. 89, p. 170-173.

Knipping, B., 1989, Basalt intrusions in evaporites: Lecture Notes in Earth Sciences (Springer-Verlag), v. 24, p. 132 pp.

Koehler, G., T. K. Kyser, R. Enkin, and E. Irving, 1997, Paleomagnetic and isotopic evidence for the diagenesis and alteration of evaporites in the Paleozoic Elk Point Basin, Saskatchewan, Canada: Canadian Journal of Earth Sciences, v. 34, p. 1619-1629.

Koehler, G. D., 1997, The Geochemistry and Petrogenesis of Carnallite and its Relationship to the Diagenesis of the Devonian Prairie Formation: PhD thesis, University of Saskatchewan.

Koehler, G. D., T. K. Kyser, and T. Danyluk, 1990, Stable Isotope evidence for the petrogenesis of carnallite In the Middle Devonian Prairie Evaporile Formation, Saskatchewan: Summary of Investigations 1990, Saskatchewan Geological Survey; Saskatchewan Energy and Mines, Miscellaneous Report 90-04.

Liu, C., Y. Ji, Y. Bai, F. Cheng, and X. Lu, 2007, Formation of porous crystals by coupling of dissolution and nucleation process in fractional crystallization: Fluid Phase Equilib, v. 261, p. 300-305.

Lowenstein, T., B. Kendall, and A. D. Anbar, 2014, Chapter 8.21. The Geologic History of Seawater, Treatise on Geochemistry (2nd Edition), Elsevier, p. 569-621.

Lowenstein, T. K., 1988, Origin of depositional cycles in a Permian ''saline giant''; the Salado (McNutt Zone) evaporites of New Mexico and Texas: Geological Society of America Bulletin, v. 100, p. 592-608.

Lowenstein, T. K., and R. J. Spencer, 1990, Syndepositional origin of potash evaporites; petrographic and fluid inclusion evidence: American Journal of Science, v. 290, p. 43-106.

Ma, L., T. K. Lowenstein, B. Li, P. Jiang, C. Liu, J. Zhong, J. Sheng, H. Qiu, and H. Wu, 2010, Hydrochemical characteristics and brine evolution paths of Lop Nor Basin, Xinjiang Province, Western China: Applied Geochemistry, v. 25, p. 1770-1782.

Mackintosh, A. D., and G. A. McVittie, 1983, Geological anomalies observed at the Cominco Ltd. Saskatchewan potash mine: Potash '83; Potash technology; mining, processing, maintenance, transportation, occupational health and safety, environment., p. 59-64.

Matthews, R. D., and G. C. Egleson, 1974, Origin and Implications of a Mid-Basin Potash Facies in the Salina Salt of Michigan, Fourth International Symposium on Salt, v. 1, Northern Ohio Geological Society, p. 15-34.

McIntosh, R. A., and N. C. Wardlaw, 1968, Barren halite bodies in the sylvinite mining zone at Esterhazy, Saskatchewan: Canadian Journal of Earth Sciences, v. 5, p. 1221-1238.

Mossman, D. J., R. N. Delabio, and A. D. Mackintosh, 1982, Mineralogy of clay marker seams in some Saskatchewan potash mines: Canadian Journal of Earth Sciences, v. 19, p. 2126-2140.

Mossop, G., and I. Shetsen, 1994, Geological Atlas of the Western Canada Sedimentary Basin: Canadian Society of Petroleum Geologists and Alberta Research Council, 504 p.

Prud'homme, M., and S. T. Krukowski, 2006, Potash, in J. E. Kogel, N. C. Trivedi, J. M. Barker, and S. T. Krukowski, eds., Industrial Minerals and Rocks, SME (Soc. Mining Metallurgy and Exploration), p. 723-742.

Richter-Bernburg, G., 1986, Zechstein 1 and 2 anhydrites; facts and problems of sedimentation, in G. M. Harwood, and D. B. Smith, eds., The English Zechstein and related topics, v. 22: London, UK, Geological Society Special Publication, p. 157-163.

Rogers, M. B., and B. Pratt, 2017, Stratigraphy of the Middle Devonian Keg River and Prairie Evaporite formations, northeast Alberta, Canada: Bulletin of Canadian Petroleum Geology, v. 65, p. 5-63.

Root, K. G., 2001, Devonian Antler Fold and Thrust Belt and Foreland Basin Development in the Southern Canadian Cordillera: Implications for the Western Canada Sedimentary Basin: Bulletin of Canadian Petroleum Geology, v. 49, p. 7-36.

Rosell, L., and F. Ortí, 1981, The saline (potash) formation of the Navarra basin (Upper Eocene, Spain). Petrology: Revista Instituto Investigaciones Geologicas, v. 35, p. 71-121.

Rouchy, J.-M., 1997, Paleogene Continental Rift System of Western Europe: locations of basins, paleogeographic and structural framework, and the distribution of evaporites: In: Busson, G., Schreiber, B.C. (Eds.), Sedimentary Deposition in Rift and Foreland Basins in France and Spain (Paleogene and Lower Neogene). Columbia University Press, New York, pp. 45–94.

Schofield, N., I. Alsop, J. Warren, J. R. Underhill, R. Lehné, W. Beer, and V. Lukas, 2014, Mobilizing salt: Magma-salt interactions: Geology, v. 42, p. 599-602.

Schwerdtner, W. M., 1964, Genesis of potash rocks in Middle Devonian Prairie Evaporite Formation of Saskatchewan: Bulletin American Association Petroleum Geologists, v. 48, p. 1108-1115.

Schwerdtner, W. M., 1964, Genesis of potash rocks in Middle Devonian Prairie Evaporite Formation of Saskatchewan: Bulletin American Association Petroleum Geologists, v. 48, p. 1108-1115.

Smith, D. B., 1996, Deformation in the late Permian Boulby Halite (EZ3Na) in Teesside, NE England: Geological Society, London, Special Publications, v. 100, p. 77-87.

Smith, D. B., and A. Crosby, 1979, The regional and stratigraphical context of Zechstein 3 and 4 potash deposits in the British sector of the southern North Sea and adjoining land areas: Economic Geology, v. 74, p. 397-408.

Steinmann, M., P. Stille, W. Bernotat, and B. Knipping, 1999, The corrosion of basaltic dykes in evaporites: Ar-Sr-Nd isotope and rare earth elements evidence: Chemical Geology, v. 153, p. 259-279.

Szatmari, P., R. S. Carvalho, and I. A. Simoes, 1979, A comparison of evaporite facies in the late Paleozoic Amazon and the Middle Cretaceous South Atlantic salt basins: Economic Geology, v. 74, p. 432-447.

Valyashko, M. G., 1972, Playa lakes, a necessary stage in the development of a salt-bearing basin [with discussion]: Geology of saline deposits, Unesco Earth Sci. Ser., p. 41-51.

van't Hoff, J. H., 1912, Untersuchungen Uber die Bildungsurhältnisse der ozeanischen Salzablangerungen, insbesondere das Stassfurter Salzlagers: Leipzig.

Voigt, W., 2015, What we know and still not know about oceanic salts: Pure Appl. Chem., v. 87, p. 1099-1026.

Volozh, Y., C. J. Talbot, and A. Ismail-Zadeh, 2003, Salt structures and hydrocarbons in the Pricaspian basin: Bulletin American Association Petroleum Geologists, v. 87, p. 313-334.

Wall, M., J. Cartwright, R. Davies, and A. McGrandle, 2010, 3D seismic imaging of a Tertiary Dyke Swarm in the Southern North Sea, UK: Basin Research, v. 22, p. 181-194.

Wardlaw, N. C., 1968, Carnallite-sylvite relationships in the middle Devonian Prairie evaporite formation, Saskatchewan: Geological Society America Bulletin, v. 79, p. 1273-1294.

Wardlaw, N. C., 1972a, Unusual marine evaporites with salts of calcium and magnesium chloride in Cretaceous basins of Sergipe, Brazil: Economic Geology, v. 67, p. 156-168.

Wardlaw, N. C., 1972b, Syn-sedimentary folds and associated structures in Cretaceous salt deposits of Sergipe, Brazil: J. Sediment. Petrol., v. 42, p. 572-577.

Wardlaw, N. C., and G. D. Nicholls, 1972, Cretaceous Evaporites of Brazil and West Africa and their Bearing on the Theory of Continent Separation.: 24th Inter. Geol. Congr., v. 6, p. 43-55.

Wardlaw, N. C., and D. W. Watson, 1966, Middle Devonian salt formations and their bromide content, Elk Point area, Alberta: Canadian Journal of Earth Sciences, v. 3, p. 263-275.

Warren, J. K., 2000, Geological controls on the quality of potash, in R. M. Geertmann, ed., 8th World Salt Symposium, v. 1: Amsterdam, Elsevier, p. 173-180.

Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217-268.

Warren, J. K., 2011, Evaporitic source rocks: mesohaline responses to cycles of “famine or feast” in layered brines, Doug Shearman Memorial Volume, (Wiley-Blackwell) IAS Special Publication Number 43, p. 315-392.

Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

Warren, J. K., 2017, Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term: Earth-Science Reviews, v. 165, p. 302-341.

Williams-Stroud, S. C., 1994, Solution to the Paradox? Results of some chemical equilibrium and mass balance calculations applied to the Paradox Basin evaporite deposit: American Journal of Science, v. 294, p. 1189-1228.

Wittrup, M. B., and T. K. Kyser, 1990, The petrogenesis of brines in Devonian potash deposits of western Canada: Chemical Geology, v. 82, p. 103-128.

Woods, P. J. E., 1979, The geology of Boulby Mine: Economic Geology, v. 74, p. 409-418.

Worsley, N., and A. Fuzesy, 1979, The potash-bearing members of the Devonian Prairie Evaporite of southeastern Saskatchewan, south of the mining area: Economic Geology, v. 74, p. 377-388.

Xia, S. P., X. L. Hong, and S. Y. Gao, 1993, Study on the dissolution kinetics and mechanism of carnallite and KC (in Chinese with English abstract): Journal Salt Lake Research, v. 1, p. 52-60.

Yang, C., G. Jensen, and J. Berenyi, 2009, The Stratigraphic Framework of the Potash-rich Members of the Middle Devonian Upper Prairie Evaporite Formation, Saskatchewan: Summary of Investigations 2009, Saskatchewan Geological Survey; Misc. Rep. 2009-4.1, 28 p.

Zak, I., 1997, Evolution of the Dead Sea brines, in T. M. Niemi, Z. Ben-Avraham, and J. R. Gat, eds., The Dead Sea, The Lake and Its Setting, v. 36: Oxford, Oxford University Press; Monographs on Geology and Geophysics, p. 133-144.

Zharkov, M. A., 1984, Paleozoic salt bearing formations of the world: Berlin, Springer Verlag, 427 p.

 

Brine evolution and origins of potash ore salts: Primary or secondary? Part 1 of 3

John Warren - Wednesday, October 31, 2018

Introduction

There is a dichotomy in mineralogical associations and precipitation series in both modern and ancient potash ore deposits. Interpretations of ancient potash ore mineralogies across time are generally tied to the evolution of the hydrochemical proportions in modern and ancient oceans. We have already discussed this in previous Salty Matters articles and will not repeat the details here (see August 10, 2015; July 31, 2018).

At times in the past, such as in the Devonian and the Cretaceous, the world ocean was depleted in Mg and SO4 relative to the present-day ocean (Figure 1a). In the relevant literature, this has led to the application of the term MgSO4-depleted versus MgSO4-enriched oceans. In terms of brine evolution, this is related to the gypsum divide, with the term MgSO4-enriched used to describe the ocean chemistry of today and other times in the past, such as in the Permian, when MgSO4 bittern salts typify co-precipitates with sylvite/carnallite (Figure 1b).


The validity of the ocean chemistry argument is primarily based on determinations of inclusion chemistries as measured in chevron halites (Figure 1a; Lowenstein et al., 2014). Inclusions in growth-aligned primary halite chevrons are assumed to preserve the chemical proportions in the ambient oceanic brine precipitating the halite. That is, the working assumption is that pristine aligned-halite chevrons have not been subject to significant diagenetic alteration once the salt was deposited and permeability was lost due to ongoing halite cementation in the shallow (eogenetic) subsurface realm.

The same assumption as to the pristine nature of chevron halite is applied to outcomes of biological experiments where Permian archaeal/halobacterial life has been re-animated using ancient salt samples (Vreeland et al., 2000).

Primary potash ore?

But does the same assumption of pristine texturing across time also apply to the halite layers associated with the world’s potash ores? In my experience of subsurface potash ores and their textures, I have rarely seen primary-chevron halite interlayered with potash ore layers of either sylvite or carnallite. An obvious exception is the pristine interlayering of chevron halite and sylvite in the now-depleted Eocene potash ores of the Mulhouse Basin, France (Lowenstein and Spencer, 1990). There, the sylvite layers intercalate at the cm-scale with chevron halite, and the alternating layering is thought to be related to precipitation driven by temperature fluctuations in a series of shallow density-stratified meromictic brine lakes (documented in the third Salty Matters article).

More typically, ancient potash ore textures are diagenetic and indicate responses to varying degrees of dissolution, brine infiltration and alteration. The simpler styles of brine infiltration consist of a background matrix dominated by cm-dm scale chevron halite layers that have been subject to dissolution and karstification during shallow burial. Resultant cm-dm scale voids typically retain a mm-thick selvedge of CaSO4 lathes and needles, followed by fill of the remaining void by varying amounts of sparry halite, carnallite and sylvite. This type of texture dominates Quaternary stratoid potash layers in the southern Qaidam Basin in China and Cretaceous carnallite-rich layers in the Maha Sarakham Fm in NE Thailand and southern China (Warren, 2016). Then there are the even more altered and recrystallised, but still bedded, textures in the potash ore zones of Devonian Prairie Evaporite of western Canada (Wardlaw, 1968) and potash layers in the Permian Basin in west Texas and New Mexico (Lowenstein, 1988; Holt and Powers, 2011). Beyond this level of diagenetic texturing are the flow-orientated and foliated structural textures of the Permian potash ores in potash mines in the diapiric Zechstein evaporites of Germany and Poland, the Kungurian diapirs of the Cis-Urals of Russia and the Devonian diapirs of the Pripyat Basin.

And so, herein lies the main point of discussion for this and the next two Salty Matters articles, namely, what, where and when is(are) the mechanism(s) or association(s) of hydrochemical mechanisms that sufficiently concentrate or alter a brine’s chemistry to where it precipitates economic levels of a variety of potash salts, as either muriate of potash or sulphate of potash. Notably, there are no Quaternary-age solid-state ore systems that are mined for potash.

In this article, we look at the main modern brine systems where muriate of potash (MOP) is produced economically by solar evaporation (Salar de Atacama, Chile; Qarhan sump, China; and the southern Basin of the Dead Sea). In the second article we will focus on sulphate of potash (SOP) production in Quaternary saline sumps (Great Salt Lake, USA and Lop Nur, China). In the third article we shall discuss depositional and diagenetic characteristics of solid-state potash ores some of the world’s more substantial deposits (e.g. Devonian of western Canada) and relate the observations of ancient potash texture to time-based evolution of potash precipitating brines, and subsequent alteration or the ore textures, which are typically driven by later cross-flushing by one or more pulses of diagenetically-evolved brines.


Potash from brine in Salar de Atacama (MOP in a simple near-uniserial set of brine concentration pans)

Potash production in Salar de Atacama is a byproduct of the output of lithium carbonate from shallow lake brines pumped into a series of solar concentration pans (Figure 2). The inflow feed to the concentrator pans comes from fields of brine wells extracting pore waters from the salt nucleus facies across the central and southern part of the Atacama saltflats (Figure 3a,b). However, Atacama pore brines are not chemically homogeneous across the salar (Alonso and Risacher, 1996; Risacher and Alonso, 1996; Carmona et al., 2000; Pueyo et al. 2017). The most common primary inflow brines to the Atacama sump are sulphate-rich (SO4/Ca > 1), but there are areas in the salt flat at the southern end of the playa, such as those near the Península de Chépica, where pore brines are richer in calcium (SO4/Ca < 1- Figure 4). These brines also contain elevated levels of lithium (Figure 3c; Risacher et al., 2003).


Ion proportions in the natural salar inflows and pore waters are dominated by sodium and chloride, followed by potassium, then magnesium then sulphate in the more saline regions of the salar sump (Figure 4; Lowenstein and Risacher, 2009). In addition, owing to the progressive reduction of porosity with depth, driven mainly by diagenetic halite cementation, the pore brine in the upper 40 meters of the salar sediment column accumulates by advection in the area of greatest porosity, i.e., in this top 40 m of sediments of the salt flat at the southern end of Atacama (Pueyo et al., 2017). When pumped from the hosting salar sediments into the concentrator pans, the final brines contain elevated levels of lithium chloride (≈ 6000 ppm). These lithium-enriched acidic waters are then pumped to a nearby industrial plant and processed to obtain lithium carbonate as the main commercial product.

In a benchmark paper, Pueyo et al. (2017) document the brine evolution and products recovered in the solar pans of Rockwood Lithium GmbH (Figure 2b; formerly Sociedad Chilena del Litio) in the Península de Chépica. There, a bittern paragenesis of salts precipitates that is mostly devoid of magnesium sulphate salt due to the low levels of sulphate attained in the various concentator pans via widespread precipitation of gypsum in the early concentrator pans (Figures 4, 5).


The depletion of sulphate levels in the early concentrators is done via artificial manipulation of ionic proportions in the feeders. Without alteration of the ionic proportion in halite-stage brines, the evaporation of the saltflat brine feeds, which are rich in sulfate, would result in assemblages that, in addition to potassic chlorides, would contain contain problematic magnesium sulfates (such as schoenite, kainite, glaserite as in Great Salt Lake). The presence of such sulphate salts and ions in the liquor feeding the lithium carbonate plant would complicate the lithium carbonate extraction process. So the aim in the Atacama pans is to remove most of the sulphate via constructing a suitably balanced chemistry in the early concentrator brine stage (compare ionic proportion in sulphate between early and end-stage bitterns, as illustrated in Figures 4 and Figure 5a).


Such a sylvite/carnallite brine paragenesis, sans sulphate (as seen in Figure 5), is similar to that envisaged as the feed chemistry for ancient Mg-sulphate-free marine potash deposits (Braitsch, 1971). That is, as the brines pass through the concentrators, with successive pans transitioning to higher salinities, the potash salts carnallite and sylvite precipitate, without the complication of the widespread magnesium sulphate salts, which complicate the processing of modern marine-derived bitterns. Such MgSO4 double-salts typify SOP production in the Ogden Salt flats, with their primary feed of sulphate-rich Great Salt Lake waters. Relative proportions of sulphate are much higher in the Great Salt Lake brine feed (see article 2 in this series).


Once the balance is accomplished by mixing a Ca-rich brine from further up the concentration series, with the natural SO4-brine in an appropriate ratio, the modified brines are then pumped and discharged into the halite ponds of the saltwork circuit (ponds number 17 and 16, as seen in Figures 5 and 6). In these ponds, halite precipitates from the very beginning with small amounts of accessory gypsum as brines are saturated with both minerals. Subsequently, the brines are transferred to increasingly smaller ponds where halite (ponds 15 and 14), halite and sylvite (pond 13), sylvite (ponds 12, 11 and 10), sylvite and carnallite (pond 9), carnallite (pond 8), carnallite and bischofite (pond 7), bischofite (ponds 6, 5 and 4), bischofite with some lithium-carnallite [LiClMgCl26H2O] (pond 3), and lithium-carnallite (ponds 2 and 1) precipitate. The brines of the last ponds (R-1 to R-3), whose volumes undergo a reduction to 1/50th of the starting volume, are treated at the processing factory to obtain lithium carbonate as the main commercial product.

As documented in Pueyo et al. (2017), the average daily temperature in the Salar de Atacama ranges between 22 °C in February and 8 °C in July, with a maximum oscillation of approximately 14 °C. Wind speed ranges daily from< 2 ms−1 in the morning to 15 ms−1 in the afternoon. Rainfall in the area of the salt flat corresponds to that of a hyperarid desert climate with an annual average, for the period 1988–2011, of 28 mm at San Pedro de Atacama, 15.1 mm at Peine and 11.6 mm at the lithium saltworks, in the last case ranging between 0 and 86 mm for individual years. The adjoining Altiplano to the east has an arid climate with an average annual rainfall of approximately 100 mm. The average relative humidity in the saltpan area, for the period 2006–2011, is 19.8% with a maximum around February (27%) and a minimum in October (15%) and with a peak in the morning when it may reach 50%. The low relative humidity and the high insolation (direct radiation of 3000 kWh m−2 yr−1) in the salt flat increase the efficiency of solar evaporation, giving rise to the precipitation and stability of very deliquescent minerals such as carnallite and bischofite. The average annual evaporation value measured in the period 1998–2011, using the salt flat interstitial brine, is approximately 2250 mm with a peak in December–January and a minimum in June–July. This cool high-altitude hyperarid climatic setting, where widespread sylvite and carnallite accumulates on the pan floor, is tectonically and climatically distinct from the hot-arid subsealevel basinwide desert seep settings envisaged for ancient marine-fed potash basins (as discussed in the upcoming third article in this series).

MOP from brine Dabuxum/Qarhan region, Qaidam Basin, China

The Qarhan saltflat/playa is now the largest hypersaline sump within the disaggregated lacustrine system that makes up the hydrology of Qaidam Basin, China (Figure 7a). The Qaidam basin sump has an area of some 6,000 km2, is mostly underlain by bedded Late Quaternary halite. Regionally, the depression is endorheic, fed by the Golmud, Qarhan and Urtom (Wutumeiren) rivers in the south and the Sugan River in the north, and today is mostly covered by a layered halite pan crust. Below, some 0 to 1.3m beneath the playa surface, is the watertable atop a permanent hypersaline groundwater brine lens (Figure 7b).


The southern Qaidam sump entrains nine perennial salt lakes: Seni, Dabiele, Xiaobiele, Daxi, Dabuxum (Dabsan Hu), Tuanjie, Xiezuo and Fubuxum north and south lakeshore (Figure 7). Dabuxum Lake, which occupies the central part of the Qarhan sump region, is the largest of the perennial lakes (184 km2; Figures 7b, 8a). Lake water depths vary seasonally from 20cm to 1m and never deeper than a metre, even when flooded. Salt contents in the various lakes range from 165 to 360 g/l, with pH ranging between 5.4 and 7.85. Today the salt plain and pans of the Qarhan playa are fed mostly by runoff from the Kunlun Mountains (Kunlun Shan), along with input from a number of saline groundwater springs concentrated along a fault trend defining an area of salt karst along the northern edge of the Dabuxum sump, especially north of Xiezuo Lake (Figure 8a).


The present climate across the Qaidam Basin is cool, arid to hyperarid (BWk), with an average yearly rainfall of 26 mm, mean annual evaporation is 3000–3200 mm, and a yearly mean temperature 2-4° C in the central basin (An et al., 2012). The various salt lakes and playas spread across the basin and contain alternating climate-dependent evaporitic sedimentary sequences. Across the basin the playa sumps are surrounded by aeolian deposits and wind-eroded landforms (yardangs). In terms of potash occurrence, the most significant region in the Qaidam Basin is the Qarhan sump or playa (aka Chaerhan Salt Lake), which occupies a landscape low in front of the outlets of the Golmud and Qarhan rivers (Figure 7a, b). Overall the Qaidam Basin displays a typical exposed lacustrine geomorphology and desert landscape, related to increasing aridification in a cool desert setting. In contrast, the surrounding elevated highlands are mostly typified by a high-alpine tundra (ET) Köppen climate.


Bedded and displacive salts began to accumulate in the Qarhan depression some 50,000 years ago (Figure 9). Today, outcropping areas of surface salt crust consist of a chaotic mixture of fine-grained halite crystals and mud, with a rugged, pitted upper surface (Schubel and Lowenstein, 1997; Duan and Hu, 2001). Vadose diagenetic features, such as dissolution pits, cavities and pendant cements, form wherever the salt crust lies above the watertable. Interbedded salts and siliciclastic sediments underlying the crust reach thicknesses of upwards of 70m (Kezao and Bowler, 1986).

Bedded potash, as carnallite, precipitates naturally in transient volumetrically-minor lake strandzone (stratoid) beds about the northeastern margin of Lake Dabuxum (Figure 8a) and as cements in Late Pleistocene bedded deposits exposed in and below nearby Lake Tuanje in what is known as the sediments of the Dadong ancient lake (Figure 8b). Ongoing freshened sheetflow from the up-dip bajada fans means the proportion of carnallite versus halite in the evaporite unit increases with distance from the Golmud Fan across, both the layered (bedded) and stratoid (cement) modes of occurrence.

At times in the past, when the watertable was lower, occasional meteoric inflow was also the driver for the brine cycling that created the karst cavities hosting the halite and carnallite cements that formed as prograde cements during cooling of the sinking brine (Figure 9). Solid bedded potash salts are not present in sufficient amounts to be quarried, and most of the exploited potash resource resides in interstitial brines that are pumped and processed using solar ponds.

Modern halite crusts in Qarhan playa contain the most concentrated brine inclusions of the sampled Quaternary halites, suggesting that today may be the most desiccated period in the Qarhan-Tuanje sump recorded over the last 50,000 years (values in the inset in figure 9 were measured on clear halite-spar void-fill crystals between chevrons). Inclusion measurements from these very early diagenetic halite show they formed syndepositionally from shallow groundwater brines and confirm the climatic record derived from adjacent primary (chevron) halite. The occurrence of carnallite-saturated brines in fluid inclusions in the diagenetic halite in the top 13 m of Qarhan playa sediments also imply a prograde diagenetic, not depositional, origin of carnallite, which locally accumulated in the same voids as the more widespread microkarst halite-spar cements.

Today, transient surficial primary carnallite rafts can accumulate along the northern strandline of Lake Dabuxum (Figure 9; Casas, 1992; Casas et al., 1992). Compositions of fluid inclusions in the older primary (chevron) halite beds hosting carnallite cements in the various Qarhan salt crusts represent preserved lake brines and indicate relatively wetter conditions throughout most of the Late Pleistocene (Yang et al., 1995). Oxygen isotope signatures of the inclusions record episodic freshening and concentration during the formation of the various salt units interlayered with lacustrine muds. Desiccation events, sufficient to allow halite beds to accumulate, occurred a number of times in the Late Quaternary: 1) in a short-lived event ≈ 50,000 ka, 2) from about 17 - 8,000 ka, and 3) from about 2,000 ka till now (Figure 9).

The greatest volume of water entering Dabuxum Lake comes from the Golmud River (Figure 7b). Cold springs, emerging from a narrow karst zone some 10 km to the north of the Dabuxum strandline and extending hundreds of km across the basin, also supply solutes to the lake. The spring water discharging along this fault-defined karst zone is chemically similar to hydrothermal CaCl2 basin-sourced waters as defined by Hardie (1990), and are interpreted as subsurface brines that have risen to the surface along deep faults to the north of the Dabuxum sump (Figure 9, 10; Spencer et al., 1990; Lowenstein and Risacher, 2009). Depths from where the Ca–Cl spring waters rise is not known. Subsurface lithologies of the Qaidam Basin in this region contains Jurassic and younger sediments and sedimentary rock columns, up to 15 km thick, which overlie Proterozoic metamorphic rocks (Wang and Coward, 1990).


Several lakes located near the northern karst zone (Donglin, North Huobusun, Xiezhuo, and Huobusun) receive sufficient Ca–Cl inflow, more than 1 part spring inflow to 40 parts river inflow, to form mixtures with chemistries of Ca equivalents > equivalents HCO3 + SO4 to create a simple potash evaporation series (this is indicated by the Ca-Cl trend line in Figure 10a). With evaporation such waters, after precipitation of calcite and gypsum, evolve into Ca–Cl-rich, HCO3–SO4-poor brines (brines numbered 5, 7-12 in figure 11a).


Dabuxum is the largest lake in the Qarhan region, with brines that are Na–Mg–K–Cl dominant, with minor Ca and SO4 (Figure 10d, 11a). These brines are interpreted by Lowenstein and Risacher (2009) to have formed from a mix of ≈40 parts river water to 1 part spring inflow, so that the equivalents of Ca ≈ equivalents HCO3 + SO4 (Figure 10b). Brines with this ratio of river to spring inflow lose most of their Ca, SO4, and HCO3 after precipitation of CaCO3 and CaSO4, and so form Na–K–Mg–Cl brines capable of precipitating carnallite and sylvite (Figure 11a). This chemistry is similar to that of ancient MgSO4-depleted marine bitterns (Figure 1)

The chemical composition of surface brines in the various lakes on the Qarhan Salt plain vary and appear to be controlled by the particular blend of river and spring inflows into the local lake/playa sump. In turn, this mix is controlled geographically by proximity to river mouths and the northern karst zone. Formation of marine-like ionic proportions in some lakes, such as Tuanje, Dabuxum and ancient Dadong Lake, engender bitterns suitable for the primary and secondary precipitation of sylvite/carnallite (Figures 10b-d; 11a). The variation in the relative proportion of sulphate to chloride in the feeder brines is a fundamental control on the suitability of the brine as a potash producer.

Figure 11b clearly illustrates sulphate to chloride variation in pore waters in the region to the immediate north and east of Dabuxum Lake. Brine wells in the low-sulphate area are drawn upon to supply feeder brines to the carnallite precipitating ponds. The hydrochemistry of this region is a clear indication of the regional variation in the sump hydrochemistry (Duan and Hu, 2001), but also underlines why it is so important to understand pore chemistry, and variations in aquifer porosity and permeability, when designing a potash plant in a Quaternary saline setting.

Compared to the MOP plant in Atacama, there as yet no lithium carbonate extraction stream to help ameliorate costs associated with carnallite processing. Lithium levels in the Qaidam brines, whilee levated, are much lower than in the Atacama brine feeds. Regionally, away from the Tuanje-Dadong area, most salt-lake and pore brines in the Qaidam flats are of the magnesium sulphate subtype and the ratio of Mg/Li can be as high as 500. With such brine compositions, the chemical precipitation approach, which is successfully applied to lithium extraction using low calcium and magnesium brines (such as those from Zabuye and Jezecaka Lake on the Tibetan Plateau and in the Andean Altiplano), would consume a large quantity of chemicals and generate a huge amount of solid waste. Accordingly, brine operations in the Qarhan region are focused on MOP production from a carnallitite slurry using extraction techniques similar to those utilised in the Southern Dead Sea. But owing to its cooler climate compared to the Dead Sea sump, the pond chemistry is subject to lower evaporation rates, higher moisture levels in the product, and a longer curing time.

Potash in the Qarhan region is produced by the Qinghai Salt Lake Potash Company, which owns the 120-square-kilometer salt lake area near Golmud (Figure 7). The company was established and listed on the Shenzhen Stock Exchange in 1997. Currently, it specialises in the manufacture of MOP from pore brines pumped from appropriate low-sulphate regions in the lake sediments (Figure 12). The MOP factory processes a carnallite slurry pumped from pans using a slurry processing stream very similar to the dual process stream utilized in the pans of the Southern Basin in the Dead Sea and discussed in the next section.

The final potash product in the Qaidam sump runs 60-62% K2O with >2% moisture and is distributed under the brand name of “Yanqiao.” With annual production ≈3.5 million tonnes and a projected reserve ≈ 540 million tonnes, the company currently generates 97% of Chinese domestic MOP production. However, China’s annual agricultural need for potash far outpaces this level of production. The company is jointly owned by Qinghai Salt Lake Industry Group and Sinochem Corporation and is the only domestic producer of a natural MOP product.

Dead Sea Potash (MOP operation in the Southern Basin)

The Dead Sea water surface defines what is the deepest continental position (-417 m asl) on the earth’s current terrestrial surface. In the Northen Basin is our only modern example of bedded evaporitic sediments (halite and gypsum) accumulating on the subaqueous floor of a deep brine body, where water depths are hundreds of metres (Warren, 2016). This salt-encrusted depression is 80 km long and 20 km wide, has an area of 810 km2, is covered by a brine volume of 147 km3 and occupies the lowest part of a drainage basin with a catchment area of 40,650 km2 (Figure 13a). However, falling water levels in the past few decades mean the permanent water mass now only occupies the northern part of the lake, while saline anthropogenic potash pans occupy the Southern Basin, so that the current perennial “Sea” resides in the Northern Basin is now only some 50 km long (Figure 13b).


Rainfall in the region is 45 to 90 mm, evaporation around 1500 mm, and air temperatures between 11 and 21°C in winter and 18 to 40°C in summer, with a recorded maximum of 51°C. The subsiding basin is surrounded by mountain ranges to the east and west, producing an orographic rain shadow that further emphasises the aridity of the adjacent desert sump. The primary source of solutes in the perennial lake is ongoing dissolution of the halokinetic salts of the Miocene Sedom Fm (aka Usdum Fm) a marine evaporite unit that underlies the Dead Sea and approaches the surface in diapiric structures beneath the Lisan Straits and at Mt. Sedom (Garfunkel and Ben-Avraham, 1996).

A series of linked fractionation ponds have been built in the Southern Basin of the Dead Sea to further concentrate pumped Dead Sea brine to the carnallite stage (Figure 13). On the Israeli side this is done by the Dead Sea Works Ltd. (owned by ICL Fertilisers), near Mt. Sedom, and by the Arab Potash Company (APC) at Ghor al Safi on the Jordanian side. ICL is 52.3% owned by Israel Corporation Ltd.(considered as under Government control), 13.6% shares held by Potash Corporation of Saskatchewan and 33.6% shares held by various institutional investors and the general public (33.64%). In contrast, PotashCorp owns 28% of APC shares, the Government of Jordan 27%, Arab Mining Company 20%, with the remainder held by several small Middle Eastern governments and a public float that trades on the Amman Stock Exchange. This gives PotashCorp control on how APC product is marketed, but it does not control how DSW product is sold.

In both the DSW and APC brine fields, muriate of potash is extracted by processing carnallitite slurries, created by sequential evaporation in a series of linked, gravity-fed fractionation ponds. The inflow brine currently pumped from the Dead Sea has a density of ≈1.24 gm/cc, while after slurry extraction the residual brine, with a density of ≈1.34 gm/cc, is pumped back into the northern Dead Sea basin water mass. The total area of the concentration pans is more than 250 km2, within the total area of 1,000 km2, which is the southern Dead Sea floor. The first stage in the evaporation process is pumping of Dead Sea water into header ponds and into the gravity-fed series of artificial fractionation pans that now cover the Southern Basin floor. With the ongoing fall of the Dead Sea water level over the past 60 years, brines from the Northern Basin must be pumped higher and over further lateral distances. This results in an ongoing need for more powerful brine pumps and an increasing problem with karst dolines related to lowered Dead Sea water levels. Saturation stages of the evolving pan brines are monitored and waters are moved from pan to pan as they are subject to the ongoing and intense levels of natural solar evaporation (Figure 13b, c; Karcz and Zak, 1987).

The artificial salt ponds of the Dead Sea are unusual in that they are designed to trap and discard most of the halite precipitate rather than harvest it. Most other artificial salt ponds around the world are shallow pans purpose-designed as ephemeral water-holding depressions that periodically dry out so that salts can be scrapped and harvested. In contrast, the Dead Sea halite ponds are purpose-designed to be permanently subaqueous and relatively deep (≈4m). Brine levels in the ponds vary by a few decimetres during the year, and lowstand levels generally increase each winter when waste brine is pumped back into the northern basin.

As the Dead Sea brine thickens, minor gypsum, then voluminous halite precipitates on the pan floor in the upstream section of the concentration series, where the halite-precipitating-brines have densities > 1.2 gm/cc (Figure 13c). As the concentrating brines approach carnallite-precipitating densities (around 1.3 gm/cc), they are allowed to flow into the carnallite precipitating ponds (Figure 13c). Individual pans have areas around 6-8 km2 and brine depths up to 2 metres. During the early halite concentration stages, a series of problematic halite reefs or mushroom polygons can build to the brine surface and so compartmentalise and entrap brines within isolated pockets enclosed by the reefs. This hinders the orderly downstream progression of increasingly saline brines into the carnallite ponds, with the associated loss of potash product.


When the plant was first designed, the expectation was that halite would accumulate on the floor of the early fractionation ponds as flat beds and crusts, beneath permanent holomictic brine layers. The expected volume of salt was deposited in the pans each year (Talbot et al., 1996), but instead of accumulating on a flat floor aggrading 15-20 cm each year, halite in some areas aggraded into a series of polygonally-linked at-surface salt reefs (aka salt mushrooms). Then, instead of each brine lake/pan being homogenized by wind shear across a single large subaqueous ponds, the salt reefs separated the larger early ponds into thousands of smaller polygonally-defined inaccessible compartments, where the isolated brines developed different compositions (Figure 14). Carnallitite slurries crystallised in inter-reef compartments from where it could not be easily harvested, so large volumes of potential potash product were locked up in the early fractionation ponds (Figure 14a, b). Attempts to drown the reefs by maintaining freshened waters in the ponds during the winters of 1984 and 1985 were only partly successful. The current approach to the salt reef problem in the early fractionation ponds is to periodically breakup and remove the halite reefs and mushrooms by a combination of dredging and occasional blasting (Figure 14c).


Unlike seawater feeds to conventional marine coastal saltworks producing halite with marine inflow salinities ≈35‰, the inflow brine pumped into the header ponds from the Dead Sea already has a salinity of more than 300‰ (Figure 15). Massive halite precipitation occurs quickly, once the brine attains a density of 1.235 (≈340‰) and reaches a maximum at a density of 1.24 (Figure 13c). Evaporation is allowed to continue in the initial halite concentrator ponds until the original water volume pumped into the pond has been halved. Concentrated halite-depleted brine is then pumped through a conveyance canal into a series of smaller evaporation ponds where carnallite, along with minor halite and gypsum precipitates (Figure 13c). Around 300–400 mm of carnallite salt slurry is allowed to accumulate in the carnallite ponds, with 84% pure carnallite and 16% sodium chloride as the average chemical composition (Figure 6a; Abu-Hamatteh and Al-Amr, 2008). The carnallite bed is harvested (pumped) from beneath the brine in slurry form and is delivered through corrosion-resistant steel pipes to the process refineries via a series of powerful pumps.

This carnallitite slurry is harvested using purpose-specific dredges floating across the crystalliser ponds. These dredges not only pump the slurry to the processing plant but also undertake the early part of the processing stream. On the dredge, the harvested slurry is crushed and size sorted, with the coarser purer crystals separated for cold crystallisation. The remainder is slurried with the residual pan brine and then further filtered aboard the floating dredges. At this stage in the processing stream the dredges pipe the treated slurries from the pans to the refining plant.


On arrival at the processing plant, raw product is then used to manufacture muriate of potash, salt, magnesium chloride, magnesium oxide, hydrochloric acid, bath salts, chlorine, caustic soda and magnesium metal (Figure 16a). Residual brine after carnallitite precipitation contain about 11-12 g/l bromide and is used for the production of bromine, before the waste brine (with a density around 1.34 gm/cc) is returned to the northern Dead Sea water mass. The entire cycle from the slurry harvesting to MOP production takes as little as five hours.

In the initial years of both DSW and APC operations, MOP was refined from the carnallite slurry via hot leaching and flotation. In the coarser-crystalline carnallitite feed, significant volumes of sylvite are now produced more economically in a cold crystallisation plant (Figure 16b). The cold crystallisation process takes place at ambient temperature and is less energy-intensive than the hot crystallisation unit. The method also consumes less water but requires a higher and more consistent grade of carnallite feed (Mansour and Takrouri, 2007; Abu-Hamatteh and Al-Amr, 2008). Both hot (thermal) and cold production methods can be utilized in either plant, depending on the quality of the slurry feed.

Sylvite is produced via cold crystallisation using the addition of water to incongruently dissolve the magnesium chloride from the crystal structure. If the carnallite slurry contains only a small amount of halite, the solid residue that remains after water flushing is mostly sylvite. As is shown in Figure 16b, if the MgCl2 concentration is at or near the triple-saturation point (the point at which the solution is saturated with carnallite, NaCl, and KCl), the KCl solubility is suppressed to the point where most of it will precipitate as sylvite. For maximum recovery, the crystallising mixture must be saturated with carnallite at its triple-saturation point. If the mixture is not saturated, for example, it contains higher levels of NaCl, then more KCl will dissolve during the water flushing of the slurry. Industrially, the cold crystallizers are usually fed with both coarse and fine carnallite streams, such that 10% carnallite remains in the slurry, this can be achieved by adjusting addition of process water (Mansour and Takrouri, 2007).

Successful cold crystallisation depends largely on a consistent high-quality carnallite feed. If a large amount of halite is present in the feed slurry, the resulting solid residue from cold crystallisation is sylvinite, not sylvite. This needs to be further refined by hot crystallisation, a more expensive extraction method based on the fact that the solubility of sylvite varies significantly with increasing temperature, while that of salt remains relatively constant (Figure 16c). As potash brine is hot leached from the sylvinite, the remaining halite is filtered off, and the brine is cooled under controlled conditions to yield sylvite.

Residual brine from the crystallisation processes then undergoes electrolysis to yield chlorine, caustic soda (sodium hydroxide) and hydrogen. Chlorine is then reacted with brine filtered from the pans to produce bromine. The caustic soda is sold, and the hydrogen is used to make bromine compounds, with the excess being burnt as fuel. Bromine distilled from the brine is sold partly as elemental bromine, and partly in the form of bromine compounds produced in the bromine plant at Ramat Hovav (near Beer Sheva). This is the largest bromine plant in the world, and Israel is the main exporter of bromine to Europe. About 200,000 tons of bromine are produced each year.

Residual magnesium chloride-rich solutions created by cold crystallisation are concentrated and sold as flakes for use in the chemical industry and for de-icing (about 100,000 tons per year) and dirt road de-dusting. Part of the MgCl2 solution produced is sold to the nearby Dead Sea Periclase plant (a subsidiary of Israel Chemicals Ltd.). At this plant, the brine is decomposed thermally to give an extremely pure magnesium oxide (periclase) and hydrochloric acid. In Israel, Dead Sea Salt Work’s (DSW) production has risen to more than 2.9 Mt KCl since 2005, continuing a series of increments and reflecting an investment in expanded capacity, the streamlining of product throughput in the mill facilities, and the amelioration of the effects salt mushrooms, and increased salinity of the Dead Sea due to extended drought conditions (Figure 17).

On the other side of the truce line in Jordan, the Arab Potash Co. Ltd. (APC) output rose to 1.94 Mt KCl in 2010 The APC plant now has the capacity to produce 2.35 Mt KCl and like the DSW produces bromine from bittern end brines. Early in the pond concentration stream, APC also has to remove salt mushrooms from its ponds, a process which when completed can increase carnallite output by over 50,000 t/yr. Currently, APC is continuing with an expansion program aimed at increasing potash capacity to 2.5 Mt/yr.


MOP brines and Quaternary climate

As mentioned in the introduction, exploited Quaternary potash deposits encompass both MOP and SOP mineral associations across a range of climatic and elevation settings. This article focuses on the three main MOP producing examples, the next deals with SOP Quaternary producers (Great Salt Lake, USA and Lop Nur, China). Interestingly, both sets of Quaternary examples are nonmarine brine-fed depositional hydrologies. All currently-active economic potash plants hosted in Quaternary systems do not mine a solid product but derive their potash solar evaporation of pumped hypersaline lake brines. For MOP processing to be economic the sulphate levels in the brines held in bittern-stage concentrator pans must be low and Mg levels are typically high, so favoring the precipitation of carnallite over sylvite in all three systems.

In Salar de Atacama the low sulphate levels in the bittern stage is accomplished by artificially mixing a CaCl2 brine from further up the evaporation stream with a less saline more sulphate-enriched brine. The mixing proportions of the two brine streams aims to maximise the level of extraction/removal of CaSO4 in the halite pans prior to the precipitation of sylvite and carnallite. In the case of the pans in the Qarhan sump there is a similar but largely natural mixing of river waters with fault-fed salt-karst spring waters in a ratio of 40:1 that creates a hybrid pore brine with a low sulphate chemistry suitable for the precipitation of both natural and pan carnallite. In the case of the Dead Sea brine feed, the inflowing Dead Sea waters are naturally low in sulphate and high in magnesium. The large size of this natural brine feed systems and its homogeneous nature allows for a moderate cost of MOP manufacture estimated in Warren 2016, chapter 11 to be US$ 170/tonne. The Qarhan production cost is less ≈ US$ 110/tonne but the total reserve is less than in the brine system of the Dead Sea. In Salar de Atacama region the MOP cost is likely around US$ 250-270/tonne, but this is offset by the production of a bischofite stage brine suitable for lithium carbonate extraction.

Outside of these three main Quaternary-feed MOP producers there are a number of potash mineral occurrences in intermontane depressions in the high Andes in what is a high altitude polar tundra setting (Koeppen ET), none of which are commercial (Figure 18a). Similarly, there a number of non-commercial potash (SOP) mineral and brine occurrences in various hot arid desert regions in Australia, northern Africa and the Middle East (Koeppen BWh) that we shall look at in the next article. In the Danakhil depression there is the possibility of a future combined MOP/SOP plant (see Salty Matters April 19, 2015; April 29, 2015; May 1, 2015; May12, 2015 and Bastow et al., 2018). In the Danakhil it is important to distinguish between the current non-potash climate (BWh - Koeppen climate) over the Dallol saltflat in Ethiopia, with its nonmarine brine feed and the former now-buried marine fed potash (SOP)/halite evaporite system. The latter is the target of current exploration efforts in the basin, focused on sediments now buried 60-120m below the Dallol saltflat surface. Nowhere in the Quaternary are such dry arid desert climates (BWh) associated with commercial accumulations of potash minerals.


Climatically most commercial potash brine systems in Quaternary-age sediments are located in cooler endorheic intermontane depressions (BWk, BSk) or in the case of the Dead Sea an intermontane position in the sump of the Dead Sea, the deepest position of any continental landscape on the earth’s surface (-417 msl). The association with somewhat cooler and or less arid steppe climates implies a need for greater volumes of brine to reside in a landscape in order to facilitate the precipitation of significant volumes of potash bitterns (Figure 18a,b).

In summary, all three currently economic Quaternary MOP operations are producing by pumping nonmarine pore or saline lake brines into a series of concentrator pans. The final bittern chemistry in all three is a low-sulphate liquour, but with inherently high levels of magnesium that favors the solar pan production of carnallite over sylvite that is then processed to produce the final KCl product. The brine chemistry in all three examples imitates the ionic proportions obtained when evaporating a ancient sulphate-depleted seawater (Figure 1). The next article will discuss the complexities (the double salt problem at the potash bittern stage when concentrating a more sulphate-enriched mother brine.

References

Abu-Hamatteh, Z. S. H., and A. M. Al-Amr, 2008, Carnallite froth flotation optimization and cell efficiency in the Arab Potash Company, Dead Sea, Jordan: Mineral Processing and Extractive Metallurgy Review: An International Journal, v. 29, p. 232 - 257.

Alonso, H., and F. Risacher, 1996, Geochemistry of the Salar de Atacama. 1. Origin of components and salt balance [Spanish]: Revista Geologica de Chile, v. 23, p. 113-122.

An, J. W., D. J. Kang, K. T. Tran, M. J. Kim, T. Lim, and T. Tran, 2012, Recovery of lithium from Uyuni salar brine: Hydrometallurgy, v. 117, p. 64-70.

Braitsch, O., 1971, Salt Deposits: Their Origin and Compositions: New York, Springer-Verlag, 297 p.

Carmona, V., J. J. Pueyo, C. Taberner, G. Chong, and M. Thirlwall, 2000, Solute inputs in the Salar de Atacama (N. Chile): Journal of Geochemical Exploration, v. 69, p. 449-452.

Casas, E., 1992, Modern carnallite mineralisation and Late Pleistocene to Holocene brine evolution in the nonmarine Qaidam Basin, China: Doctoral thesis, State University of New York at Binghampton.

Casas, E., T. K. Lowenstein, R. J. Spencer, and P. Zhang, 1992, Carnallite mineralization in the nonmarine, Qaidam Basin, China; evidence for the early diagenetic origin of potash evaporites: Journal of Sedimentary Petrology, v. 62, p. 881-898.

Duan, Z. H., and W. X. Hu, 2001, The accumulation of potash in a continental basin: the example of the Qarhan Saline Lake, Qaidam Basin, West China: European Journal of Mineralogy, v. 13, p. 1223-1233.

Garfunkel, Z., and Z. Ben-Avraham, 1996, The structure of the Dead Sea: Tectonophysics, v. 155-176.

Hardie, L. A., 1984, Evaporites: Marine or non-marine?: American Journal of Science, v. 284, p. 193-240.

Hardie, L. A., 1990, The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis: American Journal of Science, v. 290, p. 43-106.

Holt, N. M., J. García-Veigas, T. K. Lowenstein, P. S. Giles, and S. Williams-Stroud, 2014, The major-ion composition of Carboniferous seawater: Geochimica et Cosmochimica Acta, v. 134, p. 317-334.

Holt, R. M., and D. W. Powers, 2011, Synsedimentary dissolution pipes and the isolation of ancient bacteria and cellulose: Geological Society America Bulletin, v. 123, p. 1513-1523.

Katz, A., and A. Starinsky, 2009, Geochemical History of the Dead Sea: Aquatic Geochemistry, v. 15, p. 159-194.

Kezao, C., and J. M. Bowler, 1986, Late Pleistocene evolution of salt lakes in the Qaidam Basin, Qinghai Province, China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 54, p. 87-104.

Lowenstein, T., B. Kendall, and A. D. Anbar, 2014, Chapter 8.21. The Geologic History of Seawater, Treatise on Geochemistry (2nd Edition), Elsevier, p. 569-621.

Lowenstein, T., and F. Risacher, 2009, Closed Basin Brine Evolution and the Influence of Ca–Cl Inflow Waters: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile: Aquatic Geochemistry, v. 15, p. 71-94.

Lowenstein, T. K., 1988, Origin of depositional cycles in a Permian ''saline giant''; the Salado (McNutt Zone) evaporites of New Mexico and Texas: Geological Society of America Bulletin, v. 100, p. 592-608.

Lowenstein, T. K., L. A. Hardie, M. N. Timofeeff, and R. V. Demicco, 2003, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines: Geology, v. 31, p. 857-860.

Lowenstein, T. K., and R. J. Spencer, 1990, Syndepositional origin of potash evaporites; petrographic and fluid inclusion evidence: American Journal of Science, v. 290, p. 43-106.

Lowenstein, T. K., M. N. Timofeeff, S. T. Brennan, H. L. A., and R. V. Demicco, 2001, Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions: Science, v. 294, p. 1086-1088.

Mansour, A. R., and K. J. Takrouri, 2007, A new technology for the crystallization of Dead Sea potassium chloride: Chemical Engineering Communications, v. 194, p. 803 - 810.

Pueyo, J. J., G. Chong, and C. Ayora, 2017, Lithium saltworks of the Salar de Atacama: A model for MgSO4-free ancient potash deposits: Chemical Geology.

Risacher, F., B. Alonso, and C. Salazar, 2003, The origin of brines and salts in Chilean salars: a hydrochemical review: Earth-Science Reviews, v. 63, p. 249-293.

Risacher, F., and H. Alonso, 1996, Geochemistry of Salar de Atacama. 2. Water Evolution [Spanish]: Revista Geologica de Chile, v. 23, p. 123-134.

Schubel, K. A., and T. K. Lowenstein, 1997, Criteria for the recognition of shallow-perennial-saline-lake halites based on Recent sediments from the Qaidam Basin, western China: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 67, p. 74-87.

Spencer, R. J., T. K. Lowenstein, E. Casas, and P. Zhang, 1990, Origin of potash salts and brines in the Qaidam Basin, China, Special Publication - Geochemical Society, v. 2, p. 395-408.

Vreeland, R. H., W. D. Rosenzweig, and D. W. Powers, 2000, Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal: Nature, v. 407, p. 897-900.

Wang, Q., and M. P. Coward, 1990, The Chaidam Basin (NW China): formation and hydrocarbon potential: Journal of Petroleum Geology, v. 13, p. 93-112.

Wardlaw, N. C., 1968, Carnallite-sylvite relationships in the middle Devonian Prairie evaporite formation, Saskatchewan: Geological Society America Bulletin, v. 79, p. 1273-1294.

Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

Yang, W. B., R. J. Spencer, H. R. Krouse, T. K. Lowenstein, and E. Cases, 1995, Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, Western China - Hydrology and paleoclimatology in arid environments: Palaeogeography Palaeoclimatology Palaeoecology., v. 117, p. 279-290.

 

Stable isotopes in evaporite systems: Part I: Sulphur

John Warren - Monday, April 30, 2018

 

Introduction

The sulphur isotopic composition of sulphate dissolved in modern seawater (SW), and the relationship with the associated modern and ancient sulphate precipitates, has been studied for more than five decades. An understanding of the controlling factors is fundamental in any interpretation of the origin of modern and ancient sedimentary calcium sulphates.

So, we shall look at the significance of sulphur isotopes, first by reviwing what is known in terms of the isotopic evolution of marine sulphate salts across the evaporation series from gypsum to the bitterns, and then across a time perspective via the evolution of oceanic sulphate and sulphide signatures from the Archean to the present.


Sulphur isotopes across the bittern series

The accepted d34S value of modern seawater-derived calcium sulphate (gypsum) is + 20.0 ±0.2‰ (Sasaki, 1972; Zak et al., 1980 and references therein). This is a average value, based on numerous analyses across the range ( +19.3 to +21.4‰). Notably, Rees et al. (1978) obtained a mean of +20.99 ± 0.09‰, using the SF6 method, which has a better reproducibility than the conventional S02 method. Mediterranean seawater gave a d34S value of +20.5‰ (Nielsen, 1978).

Measured values in natural gypsum from seawater show initial precipitates have a d34S value slightly higher than that of its source brine (Figure 1). The highest isotope differential for gypsum naturally precipitated from seawater, as recorded in the literature, is +4.2‰ (Laguna Madre, Texas, U.S.A.; Thode, 1964). Most reported d34Sgypsum-sw differentials lie in range from 0 to + 2.4‰ (Ault and Kulp, 1959; Thode et al., 1961; Thode and Monster, 1965; Holser and Kaplan, 1966).

Prior to Raab and Spirto (Figure 1; 1991), laboratory experiment data on d34Sgypsum-solution are scarce, especially for solutions mimicking initial precipitation of gypsum from natural seawater and passing into halite saturation. Harrison (1956) measured a d34Sgypsum-solution value of ~ + 2‰ for gypsum precipitated from an artificial solution, that was saturated with respect to gypsum. Thode and Monster (1965) calculated a K-value [ (32S/34S)solution/ (32S/34S)gypsum] of 1.00165 from a measured a d34Sgypsum-solution value of + 1.65‰ for a CaSO4.2H2O -saturated solution, evaporated under reduced pressure and allowed to age and equilibrate for 24 months at room temperature. An experiment using natural seawater was carried out by Holser and Kaplan (1966), who sampled the products of evaporating seawater in a tank with continuous refilling (green circles in Figure 1). The results show “only a small difference between brine and gypsum precipitated” (Holser and Kaplan, 1966, p.97), resulting in a mean value of d34Sgypsum-seawater = +1.7‰ (+19.4 to +21.1‰). Harrison (1956) calculated from experimental vibrational frequencies for S04 in solution and in crystalline CaSO4.2H2O, a constant K = 1.001 for the reaction:

(Ca34S04.2H2O + 32SO4)SOLID = (Ca32S04.2H2O + 34SO4)SOLUTION

which means a 1‰ increase of d34S in the solid fraction. Nielsen (1978, p. 16-B-20), using Rayleigh-type fractionation curves indicates that, “...the gypsum/anhydrite of the sulphate facies should be slightly enriched in 34S with respect to the unaffected seawater sulphate”

In the geological record the evaporites of the later Mg- and K-Mg- sulphate bittern facies are depleted in 34S relative to the earlier, basal Ca-sulphates, as rseen in the geological record. Nielsen and Ricke (1964, p.582) give a mean value of +2‰ for the depletion in 34S in later bittern evaporite sulphates relative to the basal Ca-sulphates in the Upper Permian Zechstein Series (Hattorf and Reyershausen, Germany) whereas Holser and Kaplan (1966, pp. 116 and 117) give a value of -1.0±0.8‰ (their d34Spotash-magnesia facies sulphates - d34Sgypsum/anhydrite facies) for the Zechstein Basin (Germany) and -0.8±0.5‰ for the Upper Permian Delaware Basin (U.S.A.) evaporites (green circles in Figure 1).

Theoretical calculations of the behaviour of the sulphur isotopic fractionation during the late evaporation stages were made by Holser and Kaplan (1966, pp. 116 and 117, fig. 4) and by Nielsen (1978, p. 16-B-20, fig. 16-B-12) applying the Rayleigh distillation equation and using the same fractionation factor calculated from the initial gypsum (1.00165). Their curves are thus in a continuous line with those calculated for the Ca-sulphates. These show an increasing degree of depletion in 34S in the sulphates precipitated in the course of the progressive evaporation in a closed basin, relative to the first Ca-sulphate precipitated, up to the end of the carnallite facies. They explain it by the continuous depletion in 34S in the brines. Thus their calculated d34Scrystal-initial gypsum at the end of the halite facies is ~ -0.6‰, at the end of the Mg-sulphate facies -1.0‰, and at the beginning of the carnallite facies -3.8‰, and relative to the original seawater (their 34SC) the differences are +1.0, +0.4 and -2.2‰, respectively. Nielsen (1978) also plotted an extrapolated fractionation curve for the residual brines in a closed reservoir, indicating that the brine is constantly depleted by 1.65‰ relative to the associated precipitate.

Prior to the laboratory work of Raab and Spiro (1991), no experimental data pertaining to the isotopic behaviour of sulphate sulphur in the late evaporative stages of seawater was available in the literature. Raab and Spiro evaporated seawater, stepwise and isothermally at 23.5°C, for 73 days, up to a degree of evaporation of 138x by H2O weight. At various stages of evaporation the precipitate was totally removed from the brine and the brine was allowed to evaporate further. The sulfur isotopic compositions of the precipitates and related brines showed the following characteristics (Figure 1) where the initial d34S of the original seawater is +20‰. The d34S of both precipitates and associated brines decrease gradually across the gypsum field nd aup to the end of the halite field, where d34Sprecipitate = + 19.09‰ and d34Sbrine = + 18.40‰. The precipitates are always enriched in 34S relative to the associated brines in these fields, but the enrichment becomes smaller towards the end of the halite field. A crossover, where the d34S value of the brines becomes higher than those of the precipitates, occurs at the beginning of the Mg-sulfate field. The d34Sprecipitate increases from + 19.09‰ at the end of the halite field through +19.35‰ in the Mg-sulfate field to + 19.85‰ in the K-Mg-sulfate field, whereas the d34Sbrine increased from +18.40‰, through +20.91‰ to +20.94‰, respectively.

This evolution implies different values of fractionation factors (a) for the minerals precipitated in the late halite, Mg-sulphate and K-Mg-sulphate fields, other than that for gypsum (1.00165). The value of aprecipitate-residual brine would then be very slightly >1 in the late halite field and >1 in the two later fields.

The experimental pattern of evolution of the d34S-values of the precipitates from their experiment is in good agreement with data for natural anhydrites interbedded in halites, where d34S-values are lower relative to basal gypsum (and secondary anhydrite), and of primary minerals of the Mg- and K-Mg-sulfate facies, reported in evaporitic sequences, such as those of the Delaware (U.S.A.) and of the Zechstein (Germany) basins and so can be used to better interpret a marine origin of the sulphate bitterns.


Ancient oceanic sulphate

The element sulphur is an important constituent of the Earth’s exogenic cycle. During the sulphur cycle, 34S is fractionated from 32S, with the largest fractionation occurring during bacterial reduction of marine sulphate to sulphide. Isotopic fractionation is expressed as d34S, in a manner similar to that used for carbon isotopes and the longterm carbon curves related to the sulphur isotope curve across deep time (see next article). Sedimentary sulphates (mostly measured on anhydrite, but also baryte) typically are used to record the isotopic composition of sulphur in seawater (Figure 2). Mantle d34S is near 0‰, and bacterial reduction of sulphate to sulphides (mostly as pyrite) strongly prefers 32S, thus reducing d34S in organic sulphides to negative values (≈ -18‰), so leaving oxidized sulphur species with approximately equivalent positive values (+17‰; Figure 3).


Historically, the sulphur cycle has been interpreted as being largely controlled by the biosphere and in particular by sulphate-reducing bacteria that inhabit shallow marine waters (Strauss, 1997). Typically, sulphur occurs in its oxidized form as dissolved sulphate in seawater or as evaporitic sulphate and in its reduced form as sedimentary pyrite. The isotopic compositions of both redox states are sensitive indicators for changes of the geological, marine geochemical or biological environments in the past (Figure 2). The isotope record of marine sedimentary sulphate through time has been used successfully to determine global variations of the composition of seawater sulphate.

The isotopic composition of sedimentary (biogenic) pyrite reflects geochemical conditions during its formation via bacterial sulphate reduction. Sedimentary pyrite is, thus, an important record of evolutionary (microbial) processes of life on Earth. Both time records (anhydrite and pyrite) have been combined in an isotope mass balance calculation, and changes in burial rates of oxidized vs. reduced sulphur can be determined (Strauss, 1997). This, in turn, yields important information for the overall exogenic cycle (i.e. the earth's oxygen budget as discussed in the next article).

And so, values preserved in ancient marine sulphate evaporites are part of the broader world sulphur cycle across deep time that includes movements in and out of marine sulphides (dominantly pyrite) and marine baryte precipitates (Figure 2). Values based on evaporitic CaSO4 are consistent with the ranges seen in modern gypsum (Figure 3). A plot of ancient marine CaSO4 evaporites shows the oxxidised sulphur curve for seawater has varied across time from +30‰ in the Cambrian, to around +10‰ in the Permian and that it increased irregularly in the Mesozoic to its present value of +20‰ (Figure 4). Oxygen values show much less variability and will be discussed in more detail in the next article in this series. Time-consistent variations are reflected in all major marine sulphate evaporite deposits and were most likely controlled by major input or removal of sulphides from the oceanic reservoirs during changes driven by longterm variations in tectonic activity and weathering rates.

Historically, simple removal of oceanic sulphate via an increase in the volume of megasulphate deposition in a saline giant was not thought to be accompanied by dramatic isotopic effects. Rather, variations within the global sulphur cycle were thought to be controlled by a redox balance with stored sulphides and organics in more reducing environments, which are also linked to the carbon cycle and the atmospheric oxygen budget.

In this scenario the oxidative part of the global sulphur cycle is largely governed by continental weathering (especially of marine black shale), riverine transport and evaporite deposition, while the reduced part of the sulphur cycle is controlled by levels of fixation of reduced sulphur-bearing compounds in the sediment column, mostly as pyrite via bacterial sulphate reduction (Figure 2.). The latter process preferentially removes isotopically light sulphur from seawater and so increases the d34S value in the ocean, and any consequent precipitate.

However, more recent work question aspects of this older sulphur cycle/pyrite/organics model. As just discussed, variations in d34Ssulphate across the Phanerozoic are traditionally interpreted to reflect changes in the total amount of sulphur buried as pyrite in ocean sediments — a parameter referred to as fpyr and defined as (Hurtgen, 2012);

fpyr = [(pyrite Sburial)/(pyrite Sburial + evaporite S burial)].

However, Wortmann and Paytan (2012) conclude that the 5‰ negative d34Ssulphate shift in ~120-million- year-old rocks was caused by massive seawater sulphate removal, which accompanied large-scale evaporite deposition during the opening of the South Atlantic Ocean (Figure 4). In their model, the negative d34Ssulphate shift is driven by lower pyrite burial rates that result from substantially reduced marine sulphate levels in the world ocean, tied to megasulphate precipitation. The authors attribute a 5‰ positive d34Ssulphate shift in the world’s oceans about 50 million years ago to an abrupt increase in marine sulphate concentrations as a result of large-scale dissolution of freshly exposed evaporites; they argue that the higher sulphate concentrations in the ocean in turn led to more pyrite burial.


Likewise, Halevy et al. (2012 ) studied past sulphur fluxes to and from the ocean, but over a longer time-frame (the Phanerozoic). They quantified sulphate evaporite burial rates through time, then scaled these rates to obtain a global estimate of variation in sulphur flux. Their results indicate that sulphate burial rates were higher than previously estimated, but also greatly variable. When Halevy et al. (2012) integrated these improved evaporite burial fluxes with seawater sulphate concentration estimates and sulphur isotope constraints, their calculations implied that Phanerozoic fpyr values (fpyr = fraction of sulphur removed from the oceans as pyrite) were ~100% higher on average than previously recognized. These surprisingly high and constant pyrite burial outputs must have been balanced by equally high and constant inputs of sulphate to the ocean via sulphide oxidation (weathering). These relatively high and constant rates of pyrite weathering and burial over the Phanerozoic, as identified by Halevy et al. (2012, suggest that the consumption and production of oxygen via these processes played a larger role in regulating Phanerozoic atmospheric oxygen levels than previously recognized, perhaps by as much as 50%.

Both studies recognize the importance of episodic evaporite burial on the sulphur cycle, while Wortmann and Paytan (2012) clearly show that large-scale deposition and dissolution of sulphate evaporites over relatively short geologic time scales can have an enormous impact on marine sulphate concentrations, pyrite burial rates, and the carbon cycle and so probably play a more important role than previously recognised in regulating the chemistry of the ocean atmosphere system.

The 18O content in seawater sulphate fluctuates less than sulphur values over geologic time (see next article for detailed discussion). The isotopic composition of sulphate minerals varied only slightly from the Neoproterozoic to the Palaeozoic decreasing from +17 to +14‰ (Figure 4). Values then rose during the Devonian to reach +17‰ during the Early Carboniferous (Mississippian). Values then fell to =+10‰ during the Permian, mimicked by a similar decline in sulphur values in the Late Permian to Early Triassic. Since the rise to +15‰ in the Early Triassic, values of marine sulphate minerals have remained close to +14‰ (add 3.5‰ to mineral determined value to give ambient seawater value). Overall, oxygen values show little correlation with marine sulphate variation and are perhaps are more controlled by sulphide weathering reactions.

What is also significant is that, given the now well established sulphur isotope age curve, a comparison of a measured d34S value from an anhydrite or gypsum of known geological age to the curve allows an interpretation of a possible marine origin to the salt. A value which differs from the marine signature does not necessarily mean a nonmarine origin, but, at the least, it does mean diagenetic reworking or, more likely, a groundwater-induced recycling of sulphate ions into a nonmarine saline lake (Pierre, 1988). Such oxygen and sulphur isotopic crossplots have been used to establish the continental (nonmarine) origin of the Eocene gypsum of the Paris Basin and the upper Miocene gypsum of the Granada basin, with sulphate derived from weathering of uplifted Mesozoic marine evaporites (Fontes and Letolle, 1976; Rouchy and Pierre, 1979; Pierre, 1982).

Sulphur is largely resistant to isotopic fractionation during burial alteration and transformation of gypsum to anhydrite (Figure 5; Worden et al., 1997). For example, primary marine stratigraphic sulphur isotope variation is preserved in anhydrites of the Permian Khuff Formation, despite subsequent dehydration to anhydrite during burial (≈1,000m) and initial precipitation as gypsum from Permian and Triassic seawater. Gypsum dehydration to anhydrite did not involve significant isotopic fractionation or diagenetic redistribution of material in the subsurface. At depths greater than 4300 m, the same sulphur isotope variation across the Permian-Triassic boundary is still present in elemental sulphur and H2S, both products of the reaction of anhydrite with hydrocarbons via thermochemical sulphate reduction (Figure 5). Clearly, thermochemical sulphate reduction did not lead to sulphur isotope fractionation. Worden et al. also argues that significant mass transfer has not occurred in the system, at least in the vicinity of the Permian-Triassic boundary, even though elemental sulphur and H2S are both fluid phases at depths greater than 4300 m. Primary differences in sulphur isotopes have been preserved in the rocks and fluids, despite two major diagenetic overprints that converted the sulphur in the original gypsum into elemental sulphur and H2S by 4300 m burial and the potentially mobile nature of some of the reaction products. That is, all reactions occurred must have occurred in situ; there was no significant sulphur isotope fractionation, and only negligible sulphur was added, subtracted, or moved internally within the system.


The resistance to fractionation of sulphur isotopes in subsurface pore waters can also be utilised to determine the origin of saline thermal pore waters. In a study of sulphur isotopic compositions of waters in saline thermal springs, Risacher et al. (2011) came to the interesting conclusion that dissolution of continental sedimentary gypsum from the Tertiary-age Salt Cordillera was the dominant supplier of sulphate (Figure 6). The sulphate in the springs was not supplied by the reworking of volcanic sulphur in this active volcanic terrain. d34S values from 3 to 11‰ in continental gypsum and this also encompasses the range of d34S in pedogenic gypsum (5 to 8‰) and in most surface waters (3.4 to 7.4‰) including salt lakes (Rech et al., 2003). Frutos and Cisternas (2003) found isotope ratios ranging from 1.5 to 10.8‰ in five native sulphur samples. Figure 6 presents the sulphur isotope ratio of dissolved sulphate in thermal waters sampled by Risacher et al. (2011) and references therein. The d34S of sulphate in northern thermal springs is within the range of salt lakes waters and continental gypsum. In an earlier paper Risacher et al. (2003) showed that salar brines leak through bottom sediments and are recycled in the hydrologic system. Deep circulating thermal waters are dissolving continental gypsum in sedimentary layers below the volcanics associated with the present day salars. The exception to this observation is the sulphur in Tatio springs where Cortecci et al. (2005) proposed a deep-seated source for the sulphate, related to magma degassing (Figure 6).


References

Cortecci, G., Boschetti, T., Mussi, M., Herrera Lameli, C., Mucchino, C. and Barbieri, M., 2005. New chemical and original isotopic data on waters from El Tatio geothermal field, northern Chile. Geochemical Journal 39: 547-571.

Fontes, J.C. and Letolle, R., 1976. 18O and 34S in the upper Bartonian gypsum deposits of the Paris Basin. Chemical Geology, 18(4): 285-295.

Frutos, J. and Cisternas, M., 2003. Isotopic Differentiation in Volcanic-Epithermal Surface Sulfur Deposits of Northern Chile: d34S < 0‰ in “Fertile” Systems (Au-Ag-Cu Ore Deposits below), versus d34S ≥ 0‰ for “Barren” Systems. Short Papers - IV South American Symposium on Isotope Geology (Salvador, Brazil, 2003): 733-735.

Halevy, I., Peters, S.E. and Fischer, W.W., 2012. Sulfate Burial Constraints on the Phanerozoic Sulfur Cycle. Science, 337(6092): 331-334.

Holser, W.T. and Kaplan, I.R., 1966. Isotope geochemistry of sedimentary sulfates. Chemical Geology: 93-135.

Hurtgen, M.T., 2012. The Marine Sulfur Cycle, Revisited. Science, 337(6092): 305-306.

Nielsen, H., 1978. Sulfur isotopes in nature. In: K.H. Wedepohl (Editor), Handbook of Geochemistry Section 16B, pp. B1 - B40.

Nielsen, H. and Ricke, W., 1964. Schwefel-lsotopenverhältnissen von Evaporiten aus Deutschland; Ein Beitrag zur Kenntnis von d34S im Meerwasscr-Sulfat. Geochimica et Cosmochimica Act, 28: 577-591.

Pierre, C., 1982. Teneurs en isotopes stables (18O, 2H, 13C, 34S) et conditions de genese des evaporites marines; application a quelques milieux actuels et au Messinien de la Mediterranee. Doctoral Thesis, Orsay, Paris-Sud.

Raab, M. and Spiro, B., 1991. Sulfur isotopic variations during seawater evaporation with fractional crystallization. Chemical Geology: Isotope Geoscience section, 86(4): 323-333.

Rech, J.A., Quade, J. and Hart, W.S., 2003. Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochimica et Cosmochimica Acta 67(4): 575-586.

Rees, C.E., Jenkins, W.J. and Monster, J., 1978. The sulfur isotopic composition of ocean water sulphate. Geochimica et Cosmochimica Acta, 43: 377-381.

Risacher, F., Fritz, B. and Hauser, A., 2011. Origin of components in Chilean thermal waters. Journal of South American Earth Sciences, 31(1): 153-170.

Rouchy, J.M. and Pierre, C., 1979. Donnees sedimentologiques et isotopiques sur les gypses des series evaporitiques messiniennes d'Espagne meridionale et de Chypre. Rev. Geogr. Phys. Geol. Dyn., 21(4): 267-280.

Sasaki, A., 1971. Variation in sulfur isotope composition of oceanic sulfate. 14th Int. Geol. Congr. Sect. 1: 342-345.

Strauss, H., 1997. The isotopic composition of sedimentary sulfur through time. Palaeogeography Palaeoclimatology Palaeoecology, 132: 97-118.

Thode, H.D., 1964. Stable isotopes a key to our understanding of natural processes. Bulletin Canadian Petroleum Geologists, 12: 246-261.

Thode, H.G. and Monster, J., 1965. Sulfur-Isotope Geochemistry of Petroleum, Evaporites, and Ancient Seas, Fluids in Subsurface Environments. AAPG Memoir 4, pp. 367-377.

Worden, R.H., Smalley, P.C. and Fallick, A.E., 1997. Sulfur cycle in buried evaporites. Geology, 25(7): 643-646.

Wortmann, U.G. and Paytan, A., 2012. Rapid Variability of Seawater Chemistry Over the Past 130 Million Years. Science, 337(6092): 334-336.

Zak, I., Sakai, H. and Kaplan, R., 1980. Factors controlling the 18O/16O and 34S/32S isotopic ratios of ocean sulfates and interstitial sulfates from modern deep sea sediments. In: E.D. Goldberg, Y. Horibe and K. Saruhaki (Editors), Isotope Marine Chemistry. Geochem. Res. Assoc, Tokyo, pp. 339-373.


 


Recent Posts


Tags

Neutron Log Boulby Mine RHOB Hadley Cell lapis lazuli Koeppen Climate Lake Magadi solar concentrator pans SO2 Lop Nor End-Triassic Musley potash SOP cryogenic salt Zaragoza snake-skin chert intrasalt hydrothermal potash mirabilite Stebnyk potash Corocoro copper 13C solikamsk 2 salt periphery auto-suture carnallitite waste storage in salt cavity Danakhil Depression, Afar brine lake edge gem sulfur methanogenesis climate control on salt Ingebright Lake DHAL Ethiopia dark salt carbon oxygen isotope cross plots salt karst Density log halogenated hydrocarbon lazurite sulphur saline giant seawater evolution stable isotope carbon cycle Hell Kettle Belle Isle salt mine magadiite Mesoproterozoic Badenian DHAB halophile sulphate Turkmenistan High Magadi beds brine evolution Salar de Atacama evaporite-metal association nitrogen basinwide evaporite Evaporite-source rock association salt tectonics anthropogenic potash oil gusher ozone depletion evaporite-hydrocarbon association Deep Realmonte potash allo-suture CO2 Sumo MOP eolian transport Neoproterozoic Lake Peigneur endosymbiosis sedimentary copper 18O End-Permian vadose zone Five Island salt dome trend halite Pangaea evaporite karst Hyperarid gas outburst MgSO4 depleted MgSO4 enriched well blowout sepiolite sulfate salt mine jadarite sodium silicate lithium battery natural geohazard deep seafloor hypersaline anoxic basin Red Sea GR log bischofite Dead Sea caves dissolution collapse doline lithium carbonate Schoenite black salt End-Cretaceous 18O enrichment Mulhouse Basin rockburst phreatic explosion seal capacity Warrawoona Group flowing salt Platform evaporite Lop Nur hydrogen NaSO4 salts salt trade anomalous salt zones knistersalz blowout McArthur River Pb-Zn potash ore Patience Lake member Thiotrphic symbionts gypsum dune Archean authigenic silica salt leakage, dihedral angle, halite, halokinesis, salt flow, silica solubility potash phreatomagmatic explosion Sulphate of potash causes of glaciation perchlorate Crescent potash geohazard Prairie Evaporite Karabogazgol evaporite halite-hosted cave well logs in evaporites hydrological indicator subsidence basin tachyhydrite gassy salt potash ore price Calyptogena ponderosa bedded potash Clayton Valley playa: Kara bogaz gol Weeks Island salt mine intersalt H2S Ure Terrace dihedral angle Pilbara Ripon methane kainitite mummifiction circum-Atlantic Salt Basins Messinian Dead Sea saltworks Large Igneous Magmatic Province halotolerant extrasalt Mega-monsoon zeolite organic matter Lamellibrachia luymesi lot's wife SedEx Deep seafloor hypersaline anoxic lake Jefferson Island salt mine Hadley cell: Proterozoic collapse doline capillary zone K2O from Gamma Log stevensite namakier water on Mars base metal LIP vanished evaporite Dead Sea karst collapse African rift valley lakes York (Whitehall) Mine Seepiophila jonesi salt ablation breccia supercontinent wireline log interpretation CaCl2 brine crocodile skin chert NPHI log saline clay nuclear waste storage Dallol saltpan venice source rock Kalush Potash hectorite brine pan salt suture Muriate of potash evaporite dissolution ancient climate causes of major extinction events sinkhole Catalayud cauliflower chert marine brine methanotrophic symbionts salt seal hydrothermal karst mine stability astrakanite Quaternary climate Lomagundi Event trona epsomite Stebnik Potash lithium brine hydrohalite Phaneozoic climate antarcticite Bathymodiolus childressi North Pole nacholite silicified anhydrite nodules gas in salt Koppen climate anthropogenically enhanced salt dissolution palygorskite freefight lake well log interpretation Precambrian evaporites Paleoproterozoic Oxygenation Event alkaline lake Magdalen's Road Gamma log Neoproterozoic Oxygenation Event halocarbon sinjarite recurring slope lines (RSL) HYC Pb-Zn MVT deposit doline Atlantis II Deep CO2: albedo lunette deep meteoric potash chert Zabuye Lake 13C enrichment Great Salt Lake vestimentiferan siboglinids water in modern-day Mars Belle Plain Member halokinetic meta-evaporite mass die-back

Archive