Salty Matters

The Blog is written by me, John Warren. Once every three or four weeks or so I will post an article or two on an evaporite topic that has piqued my interest. On the Saltwork Publications webpage (under "the Works") there is a growing library of pdfs and epubs based on these blogs. These articles on the website have much higher resolution extractable graphics in than in the blog. There is also a link to this set of pdfs and epubs on the home page (

Saline Clays

John Warren - Thursday, July 23, 2015

When discussing evaporites we typically focus on the formation and alteration of the various evaporite salts and their diagenetic evolution, but the same evolving saline hydrologies can also drive the formation and alteration of clays (Table 1). Many authigenic clay minerals formed in hypersaline settings are enriched in magnesium (Fisher, 1988), but authigenic clays do not make up the greater volumes of clay in modern or ancient salt lakes. Most of the clays in salt lakes and playas are detrital and reflect compositions of older argillaceous formations in the palaeodrainage areas. Illite, kaolinite, chlorite, dioctahedral smectite and a number of mixed-layers clays are commonplace detrital clay minerals in saline formations (Figure 1; Calvo et al., 1999). Widespread flocculation of clays is an effective sedimenter of suspended clay wherever freshwater runoff and streams flood an area of standing saline water. Thus the composition of initial clay sediments in a playa largely reflects that of the minerals carried as suspended load into the lacustrine depression.

The magnitude of detrital clastic input is thought to be a significant factor in the relative volume of authigenic clay. Regions with rapid deposition of clays, tied to high detrital inputs, tend to be areas where the authigenic clay component is swamped by the high detrital input. Clay authigenesis in evaporitic basins is favoured in marginal playa areas where rates of detrital clay input are low (Figure 1). This encompasses interdunal depressions, peripheral sandflats and muddy carbonate flats. In these low sedimentation areas the transformation of precursor clays is more effective, driven by episode surface inflow and groundwater discharge (Calvo et al., 1999). Highly reactive nearsurface and surface conditions are favoured by inherently large variations in pore water salinity, pH and pCO2 levels.


Clay authigenesis in many saline depressions is driven by pedogenesis, especially in the marginal areas where sedimentation rates are low and subaerial exposure dominates at the sedimentation surface. Below the surface episodic wet-dry cycles means neoformed clays are the byproduct of complex reactions between Na and Mg-rich interstitial brines and detrital silicates. Pedogenic processes account for the formation of widespread lake margin palygorskite and sepiolite, typically in association with the creation of calcretes, dolocretes and silcretes. In cases where palygorskite dominates the soil profile, they are sometimes described as palycretes. Zeolites can also form from saline groundwaters in saline lake-margin pedogenic settings (Figure 2). Artesian and phreatic groundwater discharge through springs into the lake margin areas also plays a significant role in the formation of other authigenic clays, as in saline lakes at the foot of Mt Kilimanjaro, in Tanzania and Kenya (Hay et al., 1995).


Hypersaline brines in modern, marine-edge evaporite basins can also enhance clay authigenesis even in settings where thermal and saline stresses keep both organic and inorganic carbon concentrations in the sediments unusually low relative to coastal marine environments with lower salinities (Martini et al., 2002). This is the case in Salina Ometepec where sediment pore waters exhibit little microbial sulphate reduction, and dissolved inorganic C contents are also very low. Instead of carbonate alteration (dolomitisation) in the Mg brine, authigenic K-rich Mg-smectite (saponite) formation is occurring, driven by the concurrent processes of brine concentration, selective dissolution of K- and Mg-bearing salts, and dissolution of detrital aluminosilicates. Salina Ometepec pore waters at a depth of 1 m have 87Sr/86Sr ratios that require input of Sr that is less radiogenic than that of Gulf of California seawater. This Sr is likely derived from weathering and leaching of detrital aluminosilicates from nearby volcaniclastic sources. Although rare in Holocene successions, similar Mg-rich authigenic clay assemblages are well documented in Palaeozoic evaporite basins (Bodine, 1983; Janks et al., 1992; Andreason,1992).

Once precipitated in an evaporite basin, authigenic clays can be retransported further out into the saline depression and in more humid climatic stages may even end up on the floor of freshwater lakes (Figure 1). This situation is seen in lacustrine sequences from the Miocene formations of the Madrid Basin (Bellanca et al., 1992) where significant amounts of palygorskite and sepiolite occur as either mud chips or clay aggregates in the basal part of a fresher water lacustrine unit. Eolian transport of saltating clay pellets or dust suspensions may also contribute to the transport of authigenic clays from marginal to more central areas. This sometimes leads to problems of interpretation of detrital versus authigenic in ancient lacustrine successions subject to oscillations in climate, especially when detrital clays are partially or fully inherited from arid soils.

Sepiolite, interstratified Mg-Smectite and palygorskite form authigenic phases in the Quaternary sediments of the Double Lakes Formation, Texas (Webster and Jones, 1994). The dominance of each of these minerals in separate horizons represents evaporative shifts in salinity at the time they precipitated. Sepiolite is thought to indicate a brackish lake, while Mg-smectite indicates more saline conditions. Palygorskite is interpreted as a saline pore water precipitate in the arid soils of the playa stage. Likewise Jones (1986) interpreted authigenic Mg-smectites (e.g. stevensite) as requiring higher salinity than sepiolite. Mg-silicates also define saline lake clays in Great Salt Lake (Spencer, 1983) and some Bolivian salars (Badaut and Risacher, 1983). In Bolivia, the authigenic Mg-smectite replaces the biogenic silica in diatom frustules and requires a pH in excess of 8.2. Authigenic stevensite occurs in unconsolidated muds underlying saline crusts in the interdunal depressions of northern Lake Chad and as small aragonite-associated oolites on the lake floor (Gac 1980, Darragi and Tardy, 1987). Similar stevensite oolites have been found in the Eocene Green River lacustrine basin. Stevensite is also an early authigenic phase in the modern carbonate thrombolites in the hyposaline Lake Clifton, Australia (Burne et al., 2014). Authigenic sepiolite associated with calcite, gypsum and dolomite occurs about the margin of Saline Valley Playa, California and the edges of saline pans in the Kalahari of southern Africa (Hardie, 1968; Kautz and Porada, 1976). Palygorskite, sepiolite and authigenic smectite are commonplace precipitates in calcretes of groundwater discharge playas in inland Australia (Arakel et al., 1990).

Clearly, palygorskite and sepiolite (both two-chain structure fibrous clays) occur worldwide as authigenic phases in the soils and palaeosols of arid and semi-arid regions, but the mode of precipitation is still not well understood (Singer, 1979). Both minerals are common in environments with elevated levels of magnesium and silica. Hence they form in alkaline lakes and caliche, as well as in deep sea sediments and Hydrothermal alteration products; Folk and Rasbury (2007) argue there may also be a microbial association to their formation, at least in some Texan caliches. Jones (1986) concluded sepiolite in the calcic soils of southwest Nevada required percolation of high salinity groundwaters. Magnesium and silica solutes were supplied by the weathering of nearby pyroclastics and carbonates. Sepiolite has replaced magnesite pebbles, from the edges in, during freshened highstand intervals in Miocene Lake Eskisehir in Turkey (Ece, 1998). Palygorskite in calcic soils is thought to be the result of incongruent dissolution of pre-existing clays (Jones and Galán, 1988). Fibrous clays degrade when climate becomes more humid and alter to smectite. Paquet and Millot (1972) conclude that the transformation takes place when mean rainfall exceeds 300 mm and Calvo et al. (1999) suggested the transformation can be used as a palaeoclimatic indicator.

Alunite (KAl3(SO4)2(OH)6) is a common clay product in acid saline lacustrine settings, but can also form diagenetically in regions where sulphate reduction is occurring. It is thought to be derived by the reaction of clay minerals with sulphuric acid created by oxidation of sulphides or H2S at a redox boundary. It is a common product where clays are present in zones of sulphate reduction and examples have been documented in the Middle Miocene gypsums of the Gulf of Suez (Rouchy et al., 1995) and the Upper Miocene gypsums of the Lorca Basin in Spain (Rouchy et al., 1998).

Even the smectite to illite transformation, which is used as an indicator of diagenetic intensity and clay transformations occurring at higher temperatures may be influenced by salinity. This makes illite crystallinity a less reliable indicator of diagenetic stage in environments with saline pore fluids (Honty et al., 2004). Turner and Fishman (1991) found illite-smectite mixed layer clays having a range of expandabilities in altered tuff beds in a Jurassic lake in the Morrison Formation (Eastern Colorado Plateau, USA). The observed clays did not experience deep burial, and did not undergo hydrothermal alteration. The illite content generally increases from the lake margin (100–70% smectite) to the lake centre (30–0% smectite) and follows a lateral hydrogeochemical gradient, which was characterized by increasing salinity and alkalinity (Figure 3). It seems that in a saline depositional setting, solution chemistry is a principal factor controlling the smectite to illite proportion. Illite-smectite can form from smectite at low temperatures in several ways (see Honty et al., 2004), but forms best in saline environments subject to wetting and drying cycles, which is a hydrology exemplified in salt lakes and playas. In the presence of K+ ions, alternating wetting and drying leads to irreversible fixation of K and the formation of illite layers. Illite-smectite clays forming at elevated pH may not even require wetting and drying cycles.


Andreason, M. W., 1992, Coastal siliciclastic sabkhas and related evaporative environments of the Permian Yates Formation, North Ward-Estes field, Ward County, Texas: American Association of Petroleum Geologists Bulletin, v. 76, p. 1735-1759.

Arakel, A. V., G. Jacobson, and W. B. Lyons, 1990, Sediment-water interaction as a control on geochemical evolution of playa lake systems in the Australian arid interior: Hydrobiologia, v. 197, p. 1-12.

Badaut, D., and F. Risacher, 1983, Authigenic smectite on diatom frustules in Bolivian saline lakes: Geochemica et Cosmochimica Acta, v. 47, p. 363-375.

Bellanca, A., J. P. Calvo, P. Censi, R. Neri, and M. Pozo, 1992, Recognition of lake-level changes in Miocene lacustrine units, Madrid Basin, Spain. Evidence from facies analysis, isotope geochemistry and clay mineralogy: Sedimentary Geology, v. 76, p. 135-153.

Bodine Jr, M. W., 1983, Trioctahedral clay mineral assemblages in Paleozoic marine evaporite rocks: Sixth international symposium on salt, v. 1, p. 267-284.

Burne, R. V., L. S. Moore, A. G. Christy, U. Troitzsch, P. L. King, A. M. Carnerup, and P. J. Hamilton, 2014, Stevensite in the modern thrombolites of Lake Clifton, Western Australia: A missing link in microbialite mineralization?: Geology, v. 42, p. 575-578.

Calvo, J. P., M. M. Blanc-Valleron, J. P. Rodriguez Arandia, J. M. Rouchy, and M. E. Sanz, 1999, Authigenic clay minerals in continental evaporitic environments: Special Pulication Internation Association Sedimentologists, v. 27, p. 129-151.

Darragi, F., and Y. Tardy, 1987, Authigenic trioctohedral smectites controlling pH, alkalinity silica and magnesium concentrations in alkaline lakes: Chemical Geology, v. 63, p. 59-72.

Deer, A., R. Howie, W. S. Wise, and J. Zussman, 2004, Rock Forming Minerals. vol. 4B. Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites: London, The Geological Society.

Ece, O. I., 1998, Diagenetic transformation of magnesite pebbles and cobbles to sepiolite (Meerschaum) in the Miocene Eskisehir lacustrine basin, Turkey: Clays & Clay Minerals, v. 46, p. 436-445.

Fisher, R. S., 1988, Clay minerals in evaporite host rocks, Palo Duro Basin, Texas Panhandle: Journal of Sedimentary Petrology, v. 58, p. 836-844.

Folk, R., and E. Rasbury, 2007, Nanostructure of palygorskite/sepiolite in Texas caliche: Possible bacterial origin: Carbonates and Evaporites, v. 22, p. 113-122.

Gac, J. Y., 1980, Géochimie du bassin du Lac Tchad: Travaux et Documents ORSTOM, v. 123, p. 54 pp.

Hardie, L. A., 1968, The origin of the Recent non-marine evaporite deposit of Saline Valley, Inyo County, California: Geochimica et Cosmochimica Acta, v. 32, p. 1279-1301.

Hay, R. L., R. E. Hughes, K. T. K., H. D. Glass, and J. Liu, 1995, Magnesium-rich clays of the Meerschaum Mines in the Amboseli, Tanzania and Kenya: Clays & Clay Minerals, v. 43, p. 455-466.

Honty, M., P. Uhlik, V. Sucha, M. Caplovicova, J. Francu, N. Clauer, and A. Biron, 2004, Smectite-to-illite alteration in salt-bearing bentonites (The East Slovak Basin): Clays and Clay Minerals, v. 52, p. 533-551.

Janks, J. S., M. R. Yusas, and C. M. Hall, 1992, Clay mineralogy of an interbedded sandstone, dolomite, and anhydrite; The Permian Yates Formation, Winkler County, Texas, Origin, Diagenesis, and Petrophysics of Clay Minerals in Sandstones, v. 47, SEPM (Society for Sedimentary Geology), p. 145-157.

Jones, B. F., 1986, Clay mineral diagenesis in lacustrine sediments, in F. A. Mumpton, ed., Studies in diagenesis, v. 1578, US Geological Survey Bulletin, p. 291-300.

Jones, B. F., and E. Galán, 1988, Sepiolite and palygorskite, in S. W. Bailey, ed., Hydrous Phyllosilicates (Exclusive of Micas), v. 19: Washington, Mineralogical Society of America, Reviews in Mineralogy, p. 631-674.

Kautz, K., and H. Porada, 1976, Sepiolite formation in a pan of the Kalahari: Nues Jahrb. Mineral Monatsh., v. 12, p. 545-559.

Martini, A. M., L. M. Walter, T. W. Lyons, V. C. Hover, and J. Hansen, 2002, Significance of early-diagenetic water-rock interactions in a modern marine siliciclastic/evaporite environment: Salina Ometepec, Baja California: Geological Society America Bulletin, v. 114, p. 1055-1069.

Paquet, H., and G. Millot, 1972, Geochemical evolution of clay minerals in the weathered products of Mediterranean climate: Proceedings, International Clay Conference, Madrid, 21-24 June, 1972, p. 199-206.

Rouchy, J. M., D. Noel, A. M. A. Wali, and M. A. M. Aref, 1995, Evaporitic and biosiliceous cyclic sedimentation in the Miocene of the Gulf of Suez; depositional and diagenetic aspects: Sedimentary Geology, v. 94, p. 277-297.

Rouchy, J. M., C. Taberner, M. M. Blanc-Valleron, R. Sprovieri, M. Russell, C. Pierre, E. Di Stefano, J. J. Pueyo, A. Caruso, J. Dinares-Turell, E. Gomis-Coll, G. A. Wolff, G. Cespuglio, P. Ditchfield, S. Pestrea, N. Combourieu-Nebout, C. Santisteban, and J. O. Grimalt, 1998, Sedimentary and diagenetic markers of the restriction in a marine basin: the Lorca Basin (SE Spain) during the Messinian: Sedimentary Geology, v. 121, p. 23-55.

Singer, A., 1979, Palygorskite in sediments: detrital, diagenetic or neoformed - A critical review: Geologische Rundschau, v. 68, p. 996-1008.

Spencer, R. J., 1983, The geochemical evolution of Great Salt Lake, Utah: Doctoral thesis, Johns Hopkins University.

Turner, C. E., and N. S. Fishman, 1991, Jurassic Lake T'oo'dichi': A large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau: Geological Society of America Bulletin, v. 103, p. 538-558.

Turner, C. E., and N. S. Fishman, 1991, Jurassic Lake T'oo'dichi': A large alkaline, saline lake, Morrison Formation, eastern Colorado Plateau: Geological Society of America Bulletin, v. 103, p. 538-558.

Webster, D. M., and B. F. Jones, 1994, Paleoenvironmental implicationsof lacustrine clay minerals from the Double Lakes Formation, southern Great Plains, Texas., in R. W. Renaut, and W. M. Last, eds., Sedimentology and geochemistry of modern and ancient saline lakes, v. 50: Tulsa, Society Economic Paleontologists and Mineralogists Special Publication, p. 661-686.

Recent Posts


Messinian intersalt halite H2S authigenic silica cryogenic salt Catalayud halokinetic seal capacity Kara bogaz gol anthropogenically enhanced salt dissolution Koppen climate water in modern-day Mars magadiite Kalush Potash Precambrian evaporites meta-evaporite HYC Pb-Zn allo-suture vanished evaporite North Pole geohazard Deep seafloor hypersaline anoxic lake hydrological indicator blowout supercontinent solikamsk 2 Five Island salt dome trend lot's wife bischofite halite-hosted cave silicified anhydrite nodules eolian transport potash palygorskite recurring slope lines (RSL) gas in salt organic matter evaporite dissolution Zaragoza salt mine Belle Isle salt mine freefight lake mine stability dark salt Stebnik Potash salt suture Dead Sea caves base metal Salar de Atacama Evaporite-source rock association Paleoproterozoic Oxygenation Event Pilbara Karabogazgol Hadley cell: black salt mirabilite Ure Terrace Corocoro copper sedimentary copper capillary zone NaSO4 salts well blowout basinwide evaporite saline clay nuclear waste storage zeolite perchlorate Ingebright Lake Hyperarid Quaternary climate lithium battery salt karst Deep silica solubility Dallol saltpan evaporite karst hectorite Great Salt Lake subsidence basin evaporite-metal association mummifiction climate control on salt sodium silicate SOP CaCl2 brine rockburst Sulphate of potash Lomagundi Event Jefferson Island salt mine brine evolution Weeks Island salt mine lunette circum-Atlantic Salt Basins astrakanite carnallitite Magdalen's Road natural geohazard Turkmenistan lithium brine intrasalt ancient climate dissolution collapse doline epsomite nitrogen Ripon sinkhole collapse doline MVT deposit Realmonte potash Red Sea potash ore price extrasalt stevensite MOP Stebnyk potash McArthur River Pb-Zn Koeppen Climate Hell Kettle Warrawoona Group water on Mars evaporite Neoproterozoic Oxygenation Event Dead Sea karst collapse Lake Magadi Ethiopia cauliflower chert CO2 lazurite Danakhil Depression, Afar antarcticite salt trade sepiolite venice potash ore knistersalz gem salt tectonics Musley potash jadarite lithium carbonate gypsum dune Lake Peigneur Proterozoic DHAL Platform evaporite crocodile skin chert alkaline lake High Magadi beds anomalous salt zones Zabuye Lake Pangaea chert sinjarite evaporite-hydrocarbon association hydrothermal karst waste storage in salt cavity hydrohalite auto-suture Atlantis II Deep salt leakage, dihedral angle, halite, halokinesis, salt flow, kainitite salt seal methane source rock Neoproterozoic Mesoproterozoic nacholite dihedral angle snake-skin chert gas outburst vadose zone mass die-back bedded potash doline tachyhydrite hydrothermal potash marine brine gassy salt lapis lazuli salt periphery Mega-monsoon halotolerant flowing salt Sumo Badenian trona Clayton Valley playa: oil gusher deep meteoric potash Muriate of potash African rift valley lakes Crescent potash Archean salt ablation breccia hydrogen SedEx namakier