Salty Matters

The Blog is written by me, John Warren. Once every three or four weeks or so I will post an article or two on an evaporite topic that has piqued my interest. On the Saltwork Publications webpage (under "the Works") there is a growing library of pdfs and epubs based on these blogs. These articles on the website have much higher resolution extractable graphics in than in the blog. There is also a link to this set of pdfs and epubs on the home page (www.saltworkconsultants.com).

Evaporite interactions with magma Part 3 of 3: On-site evaporite and major extinction events?

John Warren - Saturday, April 13, 2019

 

Introduction

The previous two articles in this series dealt with heating evaporites, volatiles expelled into the atmosphere, and major biotal extinction events. I argued that short-term heating of a megaevaporite mass during emplacement of a Large Igneous Province (LIP) or heating of evaporities at the site of a large bolide impact, will move vast volumes of sulphurous and halocarbon volatiles, as well as solids, CO2 and CH4 into the earth's upper atmosphere (Figure 1a). The resulting catastrophic climatic effects link in time and probable causes to earth-scale major extinction horizons. (Figure 1b). In this article shall examine how three of the five major Phanerozoic extinction events have an evaporite association, starting with the most intense extinction event of the Phanerozoic; the end-Permian and its link to LIP emplacement into two separate sequences of massive bedded evaporite (Cambrian or Devonian mega-salts) in the Tunguska Basin, Siberia.


End-Permian - Saline interactions during emplacement of Siberian Traps

The Siberian Traps LIP is of significant size (~7 × 106 km2) and total volume (~4 × 106 km3) (Ivanov et al., 2013 and references therein). It is, however, smaller than the Late Cretaceous Deccan Traps and has a volume that is about a half of the Late Triassic Central Atlantic Magmatic Province (CAMP). All three of these continental LIPs are dwarfed by the Early Cretaceous marine Ontong-Java LIP (≈20 × 106 km3). So, it seems that the volume of igneous material in a LIP does not directly relate to the intensity of the extinction event (Figure 1b).

The Siberian Traps include ultramafic alkaline, mafic and felsic rocks that erupted in different proportions within a vast region extending over several thousands of square kilometres across Western and Eastern Siberia (Figure 2a). The Siberian Traps are considered have been emplaced atop a hotspot in a relatively short time frame (≈1 million years), when a large volume of deep mantle-derived igneous material was intruded and erupted at the Permo-Triassic boundary (Burgess et al., 2017).


Trap geology

Near Noril'sk, lava outflows reach thicknesses of over 3 km, while further to the northeast in the Maymecha-Kotuy region, half of the total lava pile is composed of ultramafic rocks including magnesian rich meimechites (Figure 2a). The very high MgO contents (8-40 wt %) of the meimechites in such low-degree melts indicates that the site of initial melting was very deep, as much as 200 km, and either in the lowermost continental lithosphere or in the underlying asthenosphere (Arndt et al., 1995). Melting probably was linked with the arrival of a mantle plume that was in its turn the source of the Siberian basaltic flood volcanism.

Thickness of volcaniclastic material in the Siberian Traps ranges from intercalated layers less than a meter thick on the Putorana Plateau to hundreds of meters near the base of the volcanic sections in the Angara and the Maymecha-Kotuy areas (Figure 2a). The total volume of mafic volcaniclastic material has been estimated at >200,000 km3 or >5% of the total volume of the Siberian Traps (Black et al., 2015). Volcanic rocks of this age are also present in drillcore in the West Siberian Basin (Ivanov et al., 2013).

Magma-sediment and magma-water interactions active during emplacement of the Siberian Traps in the upper lithosphere encompass a variety of heated evaporite interactions: batholith metal-evaporite interactions, lava-water interactions and intense phreatomagmatic explosions via vents and breccia pipes that formed saline-igneous volatile fountains reaching the upper atmosphere. The positions of these fountains are perhaps indicated by vent-related iron-rich diatremes (Figure 2a; Svensen et al., 2009). All these interactions are critical inputs to the End-Permian extinction event that links vast volumes of altered evaporites with the heating mechanisms inherent to Siberian Trap geology.

 

Evaporite basins (Devonian and Cambrian)

The Siberian Traps region is not only significant because of its vast extent and its deep nickel-prone mantle source, but also in that the immense volumes of igneous rocks that making up the traps were emplaced into two chemically prone saline giants with differing dominant mineralogies and ages; 1) Cambrian mega-halite sediments in the south, with interlayers of hydrated potash salts (mostly carnallitite) and 2) Devonian megasulphates in the north, containing two 50-100m beds of anhydrite (Figures 2b, 5). The interactions with the two types of salt basins, one halite-dominant, the other anhydrite-dominant, gives rise to two distinct meta-evaporite indicator associations. In the North, the interaction of picritic magmas with bedded thick anhydrites formed the supergiant Noril'sk nickel deposit, while in the south the LIP emplacement formed numerous magnetite-rich explosive breccia pipes, sourced at the stratigraphic level of the Cambrian salts (Figure 2b).


Norils'k region & Devonian evaporites

In the northern part of the Tunguska Basin the evaporite sediments hosting the intrusives of the Siberian Traps are a combination of Devonian anhydrites and carbonates, with overlying Carboniferous coals. Trap basalts, now cover this sedimentary sequence (Figure 4a), while sill-like tholeiitic intrusions, varying in composition from subalkaline dolerite to gabbro-dolerite are emplaced in the sediment pile and were part of the feeder system to the flood basalts (Figures 4b, 5, 6).


The region of Devonian evaporites contains the Noril'sk-Talnakh ore deposit, the largest Phanerozoic nickel deposit in the world (Figures 3, 4; Naldrett 2004). In the mine area, ore-bearing gabbroic-dolerites are differentiated, whereby picrite and picritic dolerite are overlain by more felsic differentiates. The Cu-Ni-platinoid mineralisation at Noril'sk forms relatively persistent stratabound horizons of massive sulphides in the lower portions of the three mineralised intrusions (Noril'sk, Talnakh, Kharaelakh), which are made up of segregations and accumulations of pyrrhotite, pentlandite and chalcopyrite (Figures 5, 6).


At the world-scale, the supergiant Permian Noril'sk-Talnakh deposit is an unusual Cu-Ni deposit. It did not form in the Precambrian, and so is unlike almost all the world's other supergiant magmatic nickel-sulphide deposits (Figure 3). It formed at the end of the Palaeozoic and straddles the Permo-Triassic boundary (Black et al., 2014a). Magmatic nickel ores at Noril'sk crystallised outside the influence of the reducing planetary atmosphere that typifies Archaean Ni flood basalt deposits and is not tied to greenstone terranes and the athenospheric transition to more sialic plate-scale conditions. (Figure 3). The high temperatures and near complete assimilation of Devonian sulphate evaporite blocks within the Noril’sk magma mean that this is one of the more enigmatic (“salt is elsewhere”) styles of evaporite-related high-temperature ore deposits (Warren, 2016, Chapter 16). Notions of evaporite assimilation for ore deposits tied to igneous-evaporite interactions are usually only one of multiple possible explanations of a magmatic ore but, in my opinion, for Noril’sk this is the most likely scenario. So, I emphasise the evaporite connection for the Noril’sk-Talnakh deposit in this article. Alternate non-evaporitic orthomagmatic explanations can be found in papers such as Wooden et al., (1992); Lightfoot et al. (1997), and Krivolutskaya (2016). Independent of the mode of nickel-ore fixation, most authors working in the Tunguska Basin agree that the emplacement of the trap intrusives drove the escape of a huge pulse of sediment-derived volatiles into the Earth's atmosphere.


Regional structure of the Noril’sk district is dominated by NNE-NE Permo-Triassic block faulting, which was coeval with magmatic activity. Individual faults may be over 500 km in length with throws of up to a kilometre (Figure 4b; Naldrett, 1997). Mineralised intrusions radiate outward and upward from intrusive centres and penetrate all levels of the overlying sedimentary sequence. Most intrusive centres are associated with prominent block faulting and fault intersections. The main Noril’sk-Kharaelakh fault occurs within the Siberian Platform, but is parallel to the main fault system that defines the boundary between the platform and the nearby Yenisei Trough. The Kharaelakh-Noril’sk fault guided the main upwelling magma body (Figures 4b, 6). Individual sills splay off this fault control and are interlayered with sulphate evaporite beds to can attain lateral lengths of 12 km, widths of 2 km and thicknesses of 30 to 350 m.

Mineralogical compositions of the Devonian sediments interlayered with these sills are of great importance in understanding the geological responses to heating by intrusive igneous sills in the Noril'sk-Talnakh area (Figures 5, 6). Based on their lithological features and paleontological character, the intruded Devonian succession is subdivided into the Yampakhtinsky, Khrebtovsky, Zubovsky, Kureysky, and Razvedochninsky Formations (Lower Devonian), the Manturovsky and Yuktinsky Formations (Middle Devonian), and the Nakohozsky, Kalargonsky and Fokinsky Formations (Upper Devonian) (Figure 5; Krivolutskaya, 2016; Naldrett, 2004). The two main evaporite levels are the Middle Devonian and Lower Devonian anhydrite-dominant successions, both deposited in a subsealevel transitioning rift (Figure 5, 6; Naldrett, 2005; Warren, 2016).

The Yampaktinsky and Khrebtovsky Formations consist of Lower Devonian carbonates interbedded with abundant gypsum (in outcrop) and anhydrite (subsurface), along with some of the oldest lenses of celestite in the area (Figure 5). The total thicknesses of these two CaSO4 units are around 100 and 80 m, respectively. The Lower Devonian Zubovsky Formation is composed of grey-colored dolomitic marls interbedded with argillaceous dolomites, mudstones, and anhydrite with a total thickness of 110–140 m. The Zubovsky Formation unconformably overlies the Lower Devonian Khrebtovsky Formation in the Noril’sk region. The Lower Devonian Kureysky Formation consists of mottled dolomite and calcareous mudstones and marls with rare siltstone and limestone. The thicknesses of all units in the outcrop section remain stratiform and vary within 50–60 m. The contacts with the overlying and underlying formations are conformable.

The Lower Devonian Razvedochninsky Formation is dominated by siltstones, sandstones, and conglomeratic sandstones with a thickness that regionally does not exceed 110–150 m, but reaches 150–235 m in troughs, and decreases sharply to the south until fully wedging out.

The Middle Devonian Manturovsky Formation overlies the eroded Razvedochninsky Formation and consists of a terrigenous-carbonate section with abundant salt-bearing strata, most of which consist of rock salt or brecciated equivalents. This formation’s thickness is 100-210 m but ranges up to 500 m (Figure 6). The Middle Devonian Yuktinsky section is dominated by clastic–carbonate sediments ranging from 12 to 40 m thick, while in the troughs the thickness of interlayered sulphate rocks reaches 55 m. The contacts with the underlying and overlying Middle Devonian Manturovsky deposits are considered comformable. The Upper Devonian Nakokhozsky Formation consists of folded calcium-sulphate-rich variegated shale–carbonate rocks with a thickness of 2–60 m that increases in the troughs to 80–130 m (Figure 5). The Upper Devonian Kalargonsky Formation is characterised by a grey-colored terrigenous-carbonate section that includes dolomites, dolomitic marl, dolomite–limestone, and anhydrite dominate in the basins. This formation’s thickness is 170–270 m. The Kalargonsky Formation unconformably overlies the Middle Devonian Nakokhozsky sediments and the contact is typically a breccia (Figure 5).

The Middle Devonian Fokinsky Formation (as distinct from the mineralised Fokinsky intrusions) consists of evaporite sulphate-rich clastic–carbonate sequences, primarily within the troughs, and anhydrite, dolomitic marls interbedded with limestone lenses of rock salt, and clay–carbonate breccias (Krivolutskaya, 2016). The thickness of this formation is 220–420 m (approximately 500 m in the western part of the Vologochansky Trough).

The Fokinsky Formation is not recognised by all authors working in the region. This disparity in stratigraphic recognition across the region underlines a problem inherent in the litho-stratigraphic descriptions of many bedded evaporite regions worldwide, where it is assumed that a layer-cake stratigraphy/correlation is present pre- and post-intrusion. Thereby the effects of evaporite collapse dissolution, bed wedge-out and possible salt flow are not quantified. In my opinion, sedimentary breccias in such regions are more likely to be diagenetic and laterally discontinuous (see Warren, 2016; Chapter 7).

In summary, the Devonian stratigraphy in the vicinity of the Noril'sk Mine retains significant thicknesses (50-100m) with variations centred on transitions in and out of bedded anhydrite. There is a strong likelihood that the current outcrop geology interpretations under-illustrate former thicknesses of bedded evaporites during to ongoing dissolution, collapse and possible flowage.

The anomalous Phanerozoic age of the Noril’sk-Talnakh ore deposits, compared with the Precambrian ages of other magmatic Ni-Cu deposits, and its relative enrichment in Ni, Cu, Pt and Pd compared with Sudbury and Jinchuan (Figure 3), is thought to reflect the anomalously high volumes of sulphur in the parent magma. Additional sulphur entered the evolving magma chamber via intrusion and assimilation of CaSO4 blocks and associated hydrothermal solutions altering and dissolving adjacent thick-bedded anhydrite successions (Figure 7; Naldrett 1981, 1993, 1997; Pang et al., 2013). Noril'sk-Talnakh's rich sulphur supply contrasts with that of the komatiitic Archaean Cu-Ni deposits, where the sedimentary sulphur supply came from more ubiquitous, less-focused sulphur sources sometimes entrained in widespread sedimentary pyrite (Figure 3). Such pyrite characterises a significant portion of fine-grained sediments accumulated under an anoxic reducing Archaean to Palaeoproterozoic atmosphere.


Abundant crystals of magmatic anhydrite today typify the olivine-bearing (picritic) gabbros in the Kharaelakh intrusion, which is located in the basin stratigraphy at the level of the Devonian anhydrites (Figure 6; Li et al., 2009 Spiridonov, 2010). Along with disseminated sulphides, the anhydrite crystals are characterised by planar boundaries with co-associated olivine and augite. Dihedral angles of ~120°, characteristic of simultaneous crystallisation, are common throughout the anhydrite-augite assemblages. Inclusions of anhydrite in augite and vice-versa are also typical.

Rounded and subrounded sulphide inclusions composed of pyrrhotite, pentlandite, and chalcopyrite, that crystallised from immiscible sulphide liquid droplets in the magma, are commonplace within the magmatic anhydrite crystals and in the contact aureoles (Figure 7). Visual estimates by Li et al. (2009), based on five polished thin sections, indicate that the ratio of anhydrite to sulphide in mineralised samples varies from 0.05 to 0. The observation of abundant wollastonite in contact aureole rocks at this stratigraphic level suggests that reactions such as CaSO4 + SiO2 + H2O = CaSiO3 + H2S + 2O2 occurred, and that sulphate was likely reduced to sulphide before incorporation into the magma (Ripley et al., 2007).

Picritic magmas in mantle plumes can have melt temperatures as high as 1600°C (Hezberg et al., 2007). Assimilation of anhydrite via partial melting of a cooler basaltic magma at shallower depths can be more difficult, owing to the high melting point of pure anhydrite (melt temperatures typically rang between 1360 and 1450°C, although this is significantly lowered in the presence of organics and water). Rather than only melting anhydrite enclosed by picritic magma, additional fluxing mechanisms likely move additional anhydrite-derived sulphur into the melt, either by hydrothermal leaching of sulphate followed by partial reduction, or via a process involving the dissolution of anhydrite during thermochemical sulphate reduction (TSR; Warren, 2016; Chapter 9). The latter process requires heat, anhydrite and organics (generally in the form of hydrocarbons or kerogen).

Some authors use the euhedral outline of anhydrite in mineralised sills, as seen in Figure 7, to argue blocks anhydrite country rock was not assimilated. This is a specious argument as this type of anhydrite was precipitated during cooling of an already sulphur-saturated magma, the euhedral spary outline does not relate to the source of the sulphur, which is more clearly indicated by its sulphur-isotope signature (Figure 8a - also Warren, 2016; Chapter 8).


Isotopic analysis of δ34S in the magmatic anhydrites and associated metal sulphides in the Kharaelakh intrusives require the assimilation of externally-derived high-δ34S sulphur from the adjacent country rock (Figure 8: Ripley et al., 2007, 2010). Where complete sulphate reduction occurred, the δ34S values require mixtures of some 60% anhydrite-derived evaporitic marine sulphur (δ34S values near 20‰), with 40% mantle-derived sulphide (δ34S of 0‰) to produce the required measured magmatic sulphide values ≈12‰ (Figures 8a, b).

The sulphur isotope data and the nature of the sampled contact aureoles suggest intense intracontinental rifting in the Noril’sk region brought deeply-sourced mafic magmas into contact with supracrustal sulphur from evaporitic sulphates at the level of the Kharaelakh intrusion. Sulphur isotope data show the mineralised intervals at Noril’sk are anomalously heavy in δ34S (Figure 8a, b). These data are inconsistent with sulphur derived from mixing of the mantle magma sulphur (δ34Svalues near zero) with sulphur from an evaporitic sulphate source (Godlevski and Grinenko, 1963; Grinenko, 1985; Li et al., 2009; Pang et al., 2012; Black et al., 2014a).

Sulphur isotope values from Paleozoic evaporites vary between +10 and +35‰ (Figure 8b; Claypool et al., 1980). Cambrian evaporites, including the major Irkutsk basin salts in Siberia, are the most 34S-enriched evaporites in the Phanerozoic, with mean δ34SVCDT = +30‰ (Claypool et al., 1980; Black et al., 2014a). Two-member mixing curves between meimechite and anhydrite sulphur (with δ34S = +20 to +35‰) convincingly reproduce the observed δ34S trends for the Noril'sk ores (Figure 8b; Black et al., 2014a).


As the magma rose through the sedimentary cover, it penetrated and assimilated sulphur from extensive Devonian anhydrite layers (Figure 9). Sulphur in calcium sulphate was reduced to sulphide, CaO entered the magma, and iron from the magma reacted with reduced sulphur so that the end result was droplets of immiscible iron sulphide dispersed through the melt (Naldrett and Macdonald, 1980). These droplets acted as collectors for Ni, Cu and the platinum group elements, which are now so enriched in the Noril’sk ores.

Naldrett (1991, 1997, 2005) concluded that prehnite + biotite + anhydrite + carbonate + zeolite + chlorite ± sulphide globules, which typify chromite agglomerations in the picrite of the Noril’sk intrusions, represent remnants of partially assimilated sulphate-rich country rock. Assimilation of anhydrite-rich rocks, coupled with the reduction of sulphate to sulphide, would have introduced considerable oxygen into the silicate melt, which then drove precipitation of chrome-spinel minerals (chromite - FeCr2O4; mangnesiochromite - MgCr2O4). Inclusions of anhydrite-rich material, floating in the magma, would have served as loci for chromite crystallisation, thus giving rise to the association between the agglomerations and the globules. Tarasov (1970) pointed out that Middle Carboniferous coal measures were also assimilated and may have supplied organics that assisted in the reduction of sulphur in the magmas (Figures 6, 7).

Evidence of the assimilation of large volumes of anhydrite and coaly organics into the magma mass has implications beyond the formation of the Noril’sk-Talnakh ore deposits. Li et at. (2009) identified magmatic anhydrite-sulphide assemblages in a subvolcanic intrusion associated with the Siberian Traps. The δ34S values of anhydrite and coexisting sulphide crystals analysed by ion probing are 18‰–22‰ and 9‰–11‰, respectively, are much higher than the anhydrite-contaminated ore values shown in Figure 8). To obtain this level of fractionation means more than 50% of the total sulphur in the intrusion was derived from marine evaporites in the footwall strata. The contaminated magma was highly oxidised and able to dissolve up to one order of magnitude more sulphur than pure mantle-derived basaltic magma. Such sulphur-contaminated magma, when erupted, would have released vast volumes of SO2 into the atmosphere (Black et al., 2012, 2014b). That is, the eruption of the anhydrite-contaminated magma that is the Siberian Traps in the northern Tunguska Basin can help explain the intensity of the end-Permian extinction.

In summary, such igneous - sulphate sediment interaction explains, at least in part: (1) the vast amount of sulphide melt in the Noril’sk-Talnakh ore field; (2) the heavy quasi-anhydrite isotopic composition of sulphur in sideronitic and massive nickel ores; (3) the reduced contents of noble metals in these ores (compared with the drop sulphides that occur toward base of the intrusions and have a likely mantle sulphide source); and (4) the high contents of radiogenic (crustal) osmium in sideronitic and massive ores (Spiridonov, 2010; Walker et al., 1994). In summary, the reserves of the world-class Ni-PGE deposit at Noril’sk-Talnakh, with its anomalous Phanerozoic age, likely reflect a fortuitous occurrence of thick Devoninn anhydrites (ultimate sulphide source) atop an active later set of deep mantle-tapping rift grabens that drove the LIP outlined by the Siberian Traps. Wherever these magmas vented into the Earth's atmosphere they carried significant volumes of sulphurous volatiles.


Cambrian evaporites, potash & breccia pipes

Salt deposits of late Vendian to Early Cambrian age in East Siberia cover an extensive area (ca. 2 million km2) located to the north-west of Lake Baikal with an extent showing it extends across much of the Permian Siberian Traps (Figure 2b). The thickness of this upper Vendian-Lower Cambrian evaporite succession is 2.0–2.5 km in the southern, western, and central parts of the basin, and 1.3–1.5 km in the NE part (Nepa-Vilyui). This saline giant (total volume of upper Vendian–Lower Cambrian evaporites is 785,000 km3; Zharkov, 1984) is characterised by the occurrence of fourteen regional marker carbonate units and 15 salt units (Figure 10; Zharkov, 1984, with references therein). Five major phases of salt deposition are distinguished, namely the late Vendian (Danilovo) and Early Cambrian (Usolye, Belsk, Angara, and Litvintsevo) salt basins (Figure 10a; Zharkov (1984), Kuznetsov and Suchy. (1992).

Average thicknesses of the Cambrian evaporite deposits decreases with time (Figure 10b) as does the area (Figure 10a). The area of the oldest Cambrian basin, the Usolye salt basin is almost 2 million km2, and the average thickness of deposited salt around 200 m (Zharkov, 1984), while the area of the youngest, Litvintsevo salt basin is 0.5 million km2 and the average thickness of its evaporite bed (rock salt and anhydrite) is 50 m (Figure 10; Zharkov, 1984).

Most of the petroleum reservoirs in the region are located in the Cambrian carbonates. The post-Cambrian stratigraphy contains major erosional breaks. As we saw in the Noril'sk discussion, Devonian evaporites are rare in the south but abundant in the north, whereas Ordovician rocks (limestones, marls) are locally abundant in the central parts of the basin. Cambrian salt deposition is interpreted as mostly taking place in a deeper water basin: Petrichenko (1988) concluded that at the termination of halite deposition the final brine depth was 50–260 m, and at the onset of potash deposition it was ≈10–50 m.


Lower Cambrian Angara evaporites host the largest known bedded potash deposit in Russia, which is not yet produced (Figure 11; Garrett, 1995; Warren 2016, Chapter 11). Potash salts occur at the base of the Angara Formation in what is called the sixth halite series (Table 1). This intracratonic potash basin is one of the larger potash-entraining salt sumps in the world, it is several times larger than the Permian Upper Kama deposit and approaches the Prairie Evaporite in aerial extent, but not in lateral continuity, thickness or purity (Figure 11) due in large part to the effects of igneous disburbance.

Plans were made in 1986 under the old Soviet regime to initiate a mining program in a section of this basin called the Nepskoye deposit but were never fully implemented, although some ore was extracted in the mid 1980s (Andreev et al., 1986). The proposed potash development region is located near the towns of Nepa and Ust-Kut (300 km apart) in Irkutsk State. Regionally, the dominant potash mineral is carnallite, but high-grade sylvinite is intersected at depths of 600-1,000 m in beds some 1.5-5 m thick over an area ≈ 1,000 km2 (Garrett, 1995). The lower Bur or K1 bedded potash horizon lies at a depth of 750 - 960 m and is 2-18 m thick (4-6 m in the central area (Figure 11a; Table 1). Two sylvinite zones in this horizon were mapped, with the central one being 16-26 km long and 6-8 km wide (Figure 11a). In the lower horizon (K1) the sylvinite was 1.5-3 m thick, and averaged 15-50% KCl, 0.05-0.5% MgCl2,with 0.5% insolubles. The overlying K2 potash zone (Tunguaka) also entrains several sylvinite beds and is some 679-880 m deep and 2.5-20 m thick. It has a 15-45% KCl content and comparatively low MgCl2 and insoluble contents. This zone represents the major potash reserves of the deposit. In the upper potash beds (K2) the sylvinite strata become more discontinuous, but some reasonably thick, high grade and extensive zones exist (Andreev et al. 1986). The sylvite ore sits in a more regional potash succession composed of a combination of carnallitite and sylvinite (Figure 11b). The broader Nepa potash region as generally mapped in Figure 2 has two interesting characteristics; 1) The igneous trap rocks as defined in the drill-controlled cross sections of Malykh and Geletii (1988) sit below the potash level (Figure 11b), 2) There is a paucity of magnetitic explosive breccia pipes in the Nepa potash region (Figure 2b).

To the south and west, between Irkutsk and Taseyevo some 400 km to the west, other large potash occurrences have been reported in the same general but poorly delineated evaporite basins. For instance, in the Kanak-Taseyevo basin, potash beds (sylvite-carnallite containing 3-24% K2O) have been intersected at depths of 1,240-1,415 m (Garrett, 1995). Potash beds at these depths would require a solution mining methodology, but the at-surface climate would mean either cryogenic pan processing or evaporators, making recovery more difficult and expensive (Warren, 2016; Chapter 11).

Basaltic breccia pipes, Tunguska Basin Siberia

Basalt pipes form a rim to the main basalt body of the Siberian Traps and are genetically linked to trap emplacement (Figure 2b; Polozov et al., 2016). The pipes pierce through all sedimentary strata, even dolerite sills higher in the Permo-Carboniferous portion of the basin stratigraphy, and are considered to be a type of diatreme. Importantly, the basalt pipes with magnetite cores tend to occur across the southern Tunguska Basin, while unmineralised basalt pipes are more widespread (Figure 2b). Some of the basalt pipes bearing magnetite mineralisation are of commercial grade and are mined for their iron ore.

Regionally, it is difficult to estimate the total number of pipes (both “barren” basalt and magnetite-enriched) because repeated glaciations have flattened relief, while thick taiga forest covers significant parts of Siberia. Thus, many pipes are hidden by swampy coniferous forests and so are difficult to map. However, conservative estimates based on prospecting surveys for iron mineralization in the southeern portion of Tunguska Basin, and geological mapping elsewhere, suggest there are more than three hundred magnetite-bearing basalt pipes. This includes 6 large (>100 Mt of iron ores), 14 medium (20–100 Mt) and 19 small <20 Mt) sized iron deposits. All other mineralised basalt pipes are currently of sub-economic grade or underexplored (Polozov et al., 2016).

The magnetite deposits are consistently located in the Tunguska Basin region underlain by Cambrian evaporites and mainly defined by subvertical and cylindrical breccia bodies with magnesio-ferrite and magnetite as the primary ore minerals (Figure 2b). In many ways these deposits are similar to iron oxide, gold and copper (IOGC) deposits worldwide, but are classified in the Russian literature as Angara–Ilim type deposits, named after the two rivers where a large number of iron- mineralised basalt pipes crop out (Soloviev, 2010; Warren 2016, Chapter 16).

Korshunovsky (Korshunovskoye) region, Siberia

This region, in the Irkutsk district, is the eighth largest iron ore producer in Russia, with an annual output of 5 Mt of iron ore concentrate. Across the region, the pipes are sourced in the Cambrian evaporite part of the basin stratigraphy and pierce younger Paleozoic sediments composed of argillites, limestones, marls, siltstones, sandstones and clays of the late Cambrian Lena, Ust'kut, Mamyr and Ordovician Bratsk groups and overlying Early Carboniferous limestone.


We shall focus one of the largest magnesite deposits in the region, the Korshunovshoe (Korshunovsky) magnetite breccia pipe, with an estimated reserve of 1.5 Gt of ore to a depth of 1700 m (Soloviev, 2010; Polozov et al., 2016). It is mined (open pit) and so the interior structures and relationships are well documented (Figure 12). The currently mined pipe is adjacent to another explosion pipe to the immediate south-east, with the mineralised breccias sourced mainly at the level of the Cambrian evaporites (halite, potash and anhydrite; Mazurov et al., 2007). At outcrop and in the pit little evidence, other than secondary textures (dissolution-collapse and brecciation), remains of the primary minerals of the mother saline layer, although remnant, recrystallised evaporite clasts (including halite and anhydrite) typify the mineralised breccia in the lower parts of the pipe (Mazurov et al., 2007, 2018). Textures at the evaporite level in the diatremes are not unlike those seen in regions of Eocene sill interaction with hydrated salts in the Zechstein potash mines of East Germany (Schofield et al., 2014; Warren 2016 and part 1 in this series of Salty Matters articles).

The Korshunovshoe pipe is filled with tuff breccias and fragmentals composed of the surrounding saline country rocks which have undergone considerable metasomatic alteration. They incorporate fragments and larger blocks of sedimentary (60 to 80 vol.%; sandstones, siltstones, limestones, evaporite residues and argillites) and igneous (10 to 40 vol.%; gabbro-dolerites, dolerites and basalts) rocks, cemented by essentially chloritic material as well as by fine-grained carbonate (Figure 13). The central part of the magnetitic diatreme characterised by intense multiple brecciation, with rock fragments in the breccias represented mostly by variably-altered dolerites. They are cemented by a finely-dispersed matrix, entirely replaced by skarn, post-skarn alteration assemblages and iron oxides.


Outside of this zone, intense fracturing has occurred, locally with brecciation in altered sedimentary rocks. The fractures are filled with magnetite, accompanied by chlorite and calcite. Finally, the outermost zone is characterised by weak, predominantly sub-horizontal fractures within sedimentary host rocks, locally replaced by skarns. Steeply-dipping dykes of gabbro-dolerite, dolerite, dolerite-porphyry, and basalt-porphyry are present, both within and outside the breccia pipes, while sub-horizontal dolerite sills occur at depth (Soloviev, 2010; Mazurov et al., 2007, 2018).

Magnetite pipe orebodies at Korshunovshoe are texturally and mineralogically complex (Figures 12, 14) and are composed of: i) Banded masses of metasomatic magnetite that are within, and conformable to saline to calcareous members of the host sedimentary wall rocks (dominantly in dolomitic limestones, marls, calcareous argillites and sandstones with a calcareous or limy matrix, but only to a minor degree in sediments without a saline carbonate component) at a depth of some 700 to 1500 m from the surface; ii) Stock-like, lensoid, layered and columnar bodies of magnetite within the altered pyroclastics of the breccia pipe; and iii) Steeply dipping vein-like masses in zones of intense brecciation and replacement by skarns.

Together these mineralisation styles form two large continuous bodies in the Korshunovshoe pipe (Figure 12). The main deposit has the form of a sub-vertical breccia pipe with plan dimensions of approximately 2400 x 700 m. Mineralisation has been traced by drilling to a depth of 1200 m, and by geophysical data to at least 3 km below the surface (Soloviev, 2010).

The bulk of the ore is associated with brecciation and occurs within sediments, tuffs and igneous rocks and are demonstrably due to the partial replacement and alteration of the host. Massive and banded ores are less well developed. The mineralisation is mostly magnetite (≈82% of iron resources), with minor magno-magnetite, hematite and martite. The main orebody comprises vertically overlapping zones, with variable amounts of hematite and martite in the upper layers, calcite and magnetite in middle layers, and halite and magnetite in lower layers. The magnetite of the upper to middle zone is accompanied by pyroxene, chlorite and minor epidote with lesser amphibole, serpentine, calcite and garnet, and rare quartz, apatite and sphene and occurs as oolites, druses, masses and disseminations. Calcite increases downwards to 20 to 30%. In the lower part of the deposit, halite, amphibole and Mn-magnetite are more abundant. Pyrite, chalcopyrite and pyrrhotite are found throughout. Much of the magnetite is magno-magnetite which contains up to 6% MgO.

Across the region of magnetite breccia pipes, ore is extracted from magmatic diatremes that completely penetrated the highly evaporitic lower Phanerozoic succession (Figure 14; Mazurov et al., 2007, Polozov et al., 2016). Early work on this intrusive magnetite style, which surrounds brecciated diatreme-like pipes, classified it as a skarn association, forming a halo around a set of explosive pipes that accompanied regional trap magmatism (Ivashchenko and Korabel’nikova, 1960).

Characteristic spinel-forsterite magnesian skarns are confined to the overdome parts of large doleritic bodies and are the result of interactions of massive evaporitic and petroliferous dolomites with fluids released from liquid magma (Mazurov et al., 2007). Magnesian skarns of the postmagmatic stage are localised in the marginal parts and on the front (outwedged portions) of doleritic sills, apophyses, and the branches of intrusive bodies hosted at the level of the Cambrian carbonate-evaporite successions (Figure 14). The skarns penetrating the evaporite levels have a banded or layered structure and resemble gravel conglomerates, with carbonate cements. The round fragments (metasomatic pseudo-conglomerates) are composed of globules of disintegrated doleritic porphyrite, completely or partially substituted by zonal magnesian skarns. Their mesostasis is cryptocrystalline, and early phenocrysts of olivine, plagioclase, and pyroxene have undergone dispersion and substitution. Unaltered cores of the metasomatic ‘conglomerate’ are in contact with a fassaite zone, which passes outward into a spinel-fassaite zone and then into a forsterite-magnetite and calciphyre zone.


The geometry of pipe emplacement is broken down into three related styles; i) Root zone, ii) Diatreme zone, iii) Crater zone (Figure 14). The upper crater zone is sometimes complicated by the presence of reworked crater-lacustrine deposits (Polozov et al., 2016). The root zone is typically brecciated with pseudoconglomerated and other saline volatilisation textures described in the previous paragraphs. The root zone can be traced out from the pipe stem as disturbed zones with considerable lateral extents at the level of the Cambrian evaporite beds. Subhorizontal brecciated dolerite “sills” of the Kapaevsk iron deposit were cemented with calcite, magnetite and halite in various ratios and traced down to deep levels close to the root zones in some basalt pipes In the Korshunovsk iron-ore deposit, such a brecciated body extends from the main diatreme pipe some 5 km to the west and 9 km to the south-west (Von der Flaass and Nikulin, 2000).

Although not discussed in terms of a volatilisation mechanism in the published literature, I would argue that the lateral apophsyes are indicative of the former presence of hydrated salt layers, probably carnallitite beds showing similar responses to those seen in the potash mines of East Germany (Shofield et al., 2014; or part 1 in this current series of Salty Matters articles).

The diatreme chimney atop the root zone indicates the rapid rise of a overpressured and upward flowing gas-charged rock mass. Basalt magma served as the ultimate source of iron for the magnetite in the breccia pipes. Extraction of iron from the melt and its transition and accumulation took place in the presence of chlorine-rich fluids, which were formed in the course of thermal decomposition of halite-hosted hydrated salt beds (carnallite). In the later stages of ore formation, some chlorine was fixed in scapolites, while sodium was fixed in albitites and scapolitites (dipyres). In the tuffs of a number of diatremes and paleovolcanoes of the Siberian Platform, native iron can form metal balls in association with moissanites and diamonds (Goryainov et al. 1976). The occurrence of such phases, as well as bitumen in calderas and carbonaceous matter in pisolite tuffs, points to the migration of hydrocarbon fluids through the volcano-tectonic structures (Ryabov et al., 2014).


Hydrocarbons are abundant in the Cambrian and Ordovician sections of the Tunguska Basin, while coals are widespread in the Permo-Carboniferous Tunguska Series sediments (Figure 15). The juxtaposition of a vast volcanic province with its dykes, sills and diatremes interacting with extensive intracratonic saline Cambrian beds containing evaporites sealing substantial oil accumulations and interacting with coal-bearing deposits, likely produced massive quantities of halocarbons along with methane and CO2. Notably, contact metamorphism with hydrothermal systems rich in chlorine, created during pressure dissolution and dehydration of the surrounding evaporites, potentially synthesized large amounts of the organohalogens methyl chloride (CH3Cl) and methyl bromide (CH3Br) (Beerling et al., 2007; Visscher et al., 2004; Svensen et al., 2018).

In terms of rapid transfer of volatiles to the atmosphere, the phreatomagmatic-sediment pipes (diatremes) generated tall, explosive volatile-rich eruption columns, which at times reached the stratosphere (Svensen et al., 2009). Such features simultaneously promote removal of highly soluble volcanic gases, such as HCl and SO2, and potentially deliver large volumes of sulphur, halocarbons water, methane and CO2 to the upper atmosphere (Black et al., 2015).

Timing of trap emplacement

Siberian Traps magmatic activity at the end-Permain is segmented into three distinct emplacement stages (Figure 16; Burgess et al., 2017). Stage 1, beginning just before 252.24±0.1 Ma, was characterised by initial pyroclastic eruptions followed by lava effusion. During this stage, an estimated two-thirds of the total volume of Siberian Traps lavas were emplaced (>1×106 km3). Stage 2 began at 251.907±0.067 Ma, and was characterised by cessation of extrusion and the onset of widespread sill-complex formation. These sills are exposed over a >1.5 × 106 km2 area and form arguably the most aerially extensive continental sill complex on Earth. Intrusive magmatism continued throughout stage 2 with no apparent hiatus. Stage 2 ended at 251.483±0.088 Ma, when extrusion of lavas resumed after an ~420 ka hiatus, marking the beginning of stage 3. Both extrusive and intrusive magmatism continued during stage 3, which lasted until at least 251.354 ± 0.088 Ma, an age defined by the youngest sill dated in the province. A maximum date for the end of stage 3 is estimated at 250.2 ± 0.3 Ma.


Integration of LIP stages with the record of mass extinction and carbon cycle at the Permian-Triassic Global Stratotype Section and Point (GSSP) shows three important relationships (Burgess et al., 2017). (1) Extrusive eruption during stage 1 of Siberian LIP magmatism occurs over the ~300 kyr before the onset of mass extinction at 251.941 ± 0.037 Ma. During this interval, the biosphere and the carbon cycle show little evidence of instability. (2) The onset of stage 2, marked by the oldest Siberian Traps sill, and cessation of lava extrusion, coincides with the beginning of mass extinction and the abrupt (2–18 kyr) negative δ13CPDB excursion immediately preceding the extinction event (Figure 16a). The remainder of LIP stage 2, which is characterised by continued sill emplacement, coincides with broadly declining δ13CPDB values following the mass extinction. (3) Stage 3 in the LIP begins at the inflexion point in δ13CPDB composition, after which the carbon reservoir trends positive, toward pre-extinction values.

Explosive volcanism in the Siberian Traps can be classified in three distinct groups: 1) deep-rooted sediment–magma interactions and pipe eruption where feeder sills are emplaced in evaporites (Cambrian and Devonian country rock), 2) shallower magma-water interactions in areas with abundant groundwater or hydrated salts, and 3) lava flows and lava fountaining during the main stage of effusive volcanism (Jerram et al., 2016a,b). Each stage has a differing set of expressions in terms of the interacting evaporites and the landscape expression of these interactions.

Outcomes of the end-Permian igneous evaporite interplay

A unusual aspect of the Siberian trap eruption compared to many but not all LIPs is the saline and kerogen-rich nature of regional geology in the Siberian platform that interacted with the LIP magmas. The main lithologies of the region are large volumes of Devonian anhydrites in the north, Cambrian halite and hydrated-potash salts in the south, hydrocarbon source rocks and evaporite-sealed hydrocarbons, and coals in the Permo-Carboniferous portions of the stratigraphy sitting directly below the basaltic otflows. Notably, contact metamorphism and the development of hydrothermal systems rich in chlorine (produced from the pressure dissolution and volatilisation of the surrounding evaporites, kerogens, coals and hydrocarbons with evaporite seals) potentially synthesized large amounts of the organohalogens methyl chloride (CH3Cl) and methyl bromide (CH3Br) along with vast volumes of sulphurous gases, CH4 and CO2 (Figure 17).


End-Triassic extinction event - Saline interactions with CAMP magmas

The Central Atlantic Magmatic Province (CAMP) was emplaced at the end of the Triassic (≈201 Ma) in a region created by the tectonic unzipping (rifting-breakup) of the Pangean supercontinent (Figure 18; Marzoli et al., 2018). CAMP extends across the former Pangaea from modern central Brazil northeastward some 5000 km across western Africa, Iberia, and northwestern France, and from Africa westward for 2500 km through eastern and southern North America and as far west as Texas and the Gulf of Mexico (Figure 18 - dashed red line). The Province is composed of basic igneous rocks emplaced in a combination of shallow intrusions and erupted large lava flow fields extending over a land surface area in excess of 10 million km2. During its emplacement, sill intrusions into evaporites are particularly widespread in the vast Amazonas and Solimões intracratonic basins (≈1 ×106km2), representing up to 70% of the total CAMP sill volume (Svensen et al., 2018).


Sedimentary rocks intruded by sills in the Amazonas and Solimões basins include a lower (Ordovician–Mississippian) and upper (Pennsylvanian–Permian) Paleozoic series (Milani and Zalán, 1999). The lower Paleozoic series consists of sandstones and shales, some of which are particularly organic-rich (total organic content up to 8wt.%; Milani and Zalán, 1999; Gonzaga et al., 2000). The upper Paleozoic series is dominated by evaporite and carbonate deposits of varying abundances, interlayered with clastics. Sills are widespread within the upper Paleozoic evaporitic sequence, extending almost continuously from the western margin of the Solimões Basin to the eastern margin of the Amazonas Basin (Fig.19c). Sills within the lower Paleozoic unit are restricted to the eastern part of the Amazonas basin. As illustrated in Fig.19c, high-Ti sills are found only in the lower Paleozoic series. Let's look now at the saline geology of the region and then at the effect its assimilation had on sill geochemistry.


Saline geology

A significant, as yet poorly delineated, set of variable hydrated potash salts and sylvinites occur in bedded halite in the Amazon Basin, Brazil (Figures 19a, 20; Szatmari et al. 1979). The Amazon Basin is about 2,100 km long and 300 km wide, it is an intracratonic sag basin atop an aulacogen between the Guyana and Guaporé cratons (Figure 19b). The basin fill contains a number of stacked mega-sequence cycles (as defined by wireline interpretation) ranging in age from Lower Ordovician (Autaz Mirim Member of Trombetas Formation) to Lower Permian (Figure 19b; Andirá Formation; Gonzaga et al., 2000). The basin has a widespread Upper Cretaceous cover (Alter do Chão Formation) and was affected by widespread tholeiitic magmatic activity at the end-Triassic (e.g.Penatecaua dolerites of the CAMP), making seismic-based hydrocarbon exploration difficult, especially as much of the basin still lies beneath thick tropical jungle. Since the recognition of a widespread igneous overprint of the Palaeozoic sedimentary succession in the 1970s, hydrocarbon exploration efforts have been subdued (Thomaz-Filho et al., 2008). However, in the past few years, SRTM studies are proving useful, in front of seismic surveys and drilling, in the general identification of geological features in the Amazon Basin (Ibanez et al., 2016)

Th Amazonas-Solimoes intracratonic sag basin is developed on the same scale as the Alberta basin of Canada and entrains the Carboniferous (Pennsylvanian, ≈305 Ma) saline Nova Olinda Formation. It is made up of a large laterally extensive set of cyclic evaporite beds, dominated by interbedded combinations of anhydrite, shale and halite (Figures 20c, 21). These evaporites occur within the Carboniferous-Permian megasequence, known as the Tapajós Group, which can be up to 1600m thick (Milani and Zalan, 1999). The lowest part of the megasequence is a blanket of eolian sandstones (Monte Alegre Formation), which is covered by marine-influenced carbonates and evaporites (Itaituba and Nova Olinda Formations, respectively), along with subordinate sandstones and shales (Figure 19c). The Tapajós megacycle is closed by a suite of Permian continental redbeds (Andirá Formation) of Permian age. Subsequent east-west regional extension facilitated a pervasive intrusion of magmatic bodies during the end-Triassic to Early Jurassic (Penatecaua dolerites and equivalents).

Individual halite beds in the Nova Olinda evaporite cycles are 20-80 m thick, while the Nova Olinda Fm. has an average thickness of 900m. Because of the high levels of entrained anhydrite beds in the Nova Olinda Fm., evaporite layers are not halokinetic, but are subject to collapse and flow about the basin margin, especially in areas of intense meteoric dissolution (Figure 20).


Early Petrobras drilling programs conducted in the Amazon Basin from 1953 to 1963, defined the presence of halite but did not appreciate that persistent sylvinite/carnallite beds cap a number of the beds of NaCl in The Nova Olinda Formation. During the late 1960s and 1970s, higher-resolution gamma-ray logging tools were used, along with better mud technology and associated narrower calliper measures. This work identified a number of (0.5 - 2m thick) layers of sylvinite, within the halites (Szatmari et al. 1979). For example, the fifth and seventh depositional cycles define isolated salt sub-basins that accumulated significant potash salts in Fazendinha and Arari regions (Figure 20). KCl contents of these beds are between 28-33% in beds some 2.47-2.65 m thick (Garrett, 1995). The average ore depth at Fazendinha, the larger of the known potash areas, is 1,050m (Figure 20). Much of the halite and potash distribution is controlled by the underlying rift-basin architecture (Figure 19b). Potential potash reserves poorly defined, but are interpreted to be large (Szatmari et al., 1979; Garrett, 1995).

Based on its texture, structure and chemistry, the potash intersection in the Amazon Basin is divided into three distinct zones, called informally, lower (milky or white sylvinite), middle (sulphates) and upper zones (red sylvinite) (Figure 20). The lower zone (milky-white sylvinite zone) contains sylvinite, with halite and subordinate intercalated kieserite and anhydrite beds. The lower potash zone is persistent within the basin and so covers an extensive area, whereas the upper potash zone is patchier. The greater extent of the lower potash zone is perhaps because it is the best isolated from any dissolution driven by circulation of undersaturated pore fluids through the overburden.

The middle zone is composed of a combination of sulphate and chloride salts and is informally termed the sulphate zone. It hosts a variety of K, Mg and sulphate minerals that include a number of hydrated salts. Typical mineral assemblages encompass sylvinite, sylvite, and langbeinite (K2SO4.2MgSO4) as well as the hydrated salts; polyhalite (K2SO4.2MgSO4.2CaSO4.2H2O), kainite (MgSO4.KCl.3H2O) and kieserite (MgSO4.H2O). The sulphate distribution in this unit changes from anhydrite and polyhalite in the west (Fazendinha) to langbeinite and kainite in the east (Faro area). Towards the basin centre, chloride beds replace marginal sulphate beds in the sulphate unit. A gradual increase in potash concentration from west to east is interpreted by Sad et al., 1982, as indicating the inflow direction was from the basin's western boundary.

The upper potash zone consists of coarsely-crystalline red sylvinite, with thin halite and anhydrite laminations. This level includes the best K2O grades drilled so far, averaging 23% K2O (between 33% to 16%). Red sylvinite is interpreted as a second generation product formed diagenetically by incongruent leaching of primary carnallite, but, as yet no carnallite (KCl.MgCl2.6H2O) has been identified in the upper unit.

The potash zone is overlain by impermeable coarsely-crystalline halite, with minor shale intercalations in a zone up to 25 m thick, in turn, overlain by impermeable shale beds some 20 m thick. It is underlain by an impervious, at times sparry, halite interval some 70m thick (Figure 20). At the time it was described (1970s-mid 1980s) little was known of the significance of halite crystal textures in terms of their primary versus diagenetic signatures. Such a study of the nature of the halites enclosing the potash zone in the Amazon basin would aid in the definition of an ore genesis model. We do know that a single potash zone does not extend across the basin. This is seen in a compilation of existing Petrobras wells in the Amazon Basin, which intersect the Nova Olinda Fm. Instead, potash salts accumulated in a series of sumps atop a persistent thick halite unit (Figure 20).

Elevated sulphate content in the potash zone of the Amazon Basin reflects the MgSO4-enriched nature of the world ocean during the Carboniferous. Potentially high levels of sulphate in proximity to adjacent sylvinite ore targets will complicate the processing of potential ore (see Warren 2016, Chapter 11). But in terms of supplying high levels of volatiles during sill intrusions, it is highly likely the various hydrated sulphate salts in the potash zone focused sill emplacement and contributed to elevated levels of halocarbons and sulphurous gases escaping into the earth's atmosphere at the end Triassic. As yet, no phreato-magmatic pipes have been documented in the Nova Olinda, but as the sourcing evaporite unit lie a kilometer beneath the surface and the dense tropical Amazon Jungle, this is not surprising. Increasing future use of STRM data may help solve this (Ibanez et alo., 2016)

 

Saline sediment-sill interaction

Sills from the Amazonas Basin have previously been described as low-Ti tholeiitic basalts and andesitic basalts De Min et al., 2003), and sills from both basins are generally characterised by a mineral assemblage of clinopyroxene, plagioclase, Fe–Ti oxides, rare olivine and orthopyroxene and accessory quartz-feldspar intergrowths. Recent studies report the presence of high-Ti sills in the eastern part of the Amazonas Basin (Figures 18, 21; Davies et al., 2017; Heimdal et al., 2018, 2019; Marzoli et al., 2018), but no high-Ti occurrences have been observed in the Solimões Basin. 


High-precision U–Pb dates from four dolerites from the Amazonas and Solimões basins overlap in age, with U–Pb ages for low-Ti dolerites of 201.525 ±0.065 (Amazonas Basin) and 201.470 ±0.089 (Solimões Basin), and for high-Ti dolerites in the Amazonas Basin of 201.477 ±0.062 and 201.364 ±0.023 Ma (Figure 18; Davies et al., 2017; Heimdal et al., 2018). This suggests that low-and high-Ti CAMP magmatism were active simultaneously, although low-Ti magmatism likely started earlier.

Detailed studies of CAMP sill geochemistry showing likely assimilation of chloride salts from the Nova Olinda evaporites are published in Heimdal et al., 2019, and summarised in this section. They show the bulk of e dolerites as sampled in the wells, illustrated in Figure 22, are characterised by phenocrysts of clinopyroxene and plagioclase in subophitic to intergranular textures, Fe–Ti oxides, and rare olivine and orthopyroxene. A different mineralogical assemblage (microphenocrysts of alkali-feldspar, quartz, biotite and apatite) is found in small independent domains, localised within the framework of coarser plagioclase and clinopyroxene laths. These fine-grained evolved domains crystallised in late-stage, evolved melt pockets in the interstitial spaces between earlier crystallised coarser grained crystals.


The majority of the studied dolerites are generally evolved tholeiitic basalts and basaltic andesites with low TiO2 concentrations (<2.0 wt.%). Four samples have high TiO2 concentrations (>2.0 wt.%), and are found in the eastern part of the Amazonas Basin (Figure 20a, c).

Whole-rock major and trace element and Sr-Nd isotope geochemistry of both low- and high-Ti sills is similar to that of previously published CAMP rocks from the two magma types. Low-Ti sills show enriched isotopic signatures (143Nd/144Nd201Ma from 0.51215 to 0.51244; 87Sr/86Sr201Ma from 0.70568 to 0.70756), coupled with crustal-like characteristics in the incompatible element patterns (e.g. depletion in Nb and Ta). Unaltered high-Ti samples show more depleted isotopic signatures (143Nd/144Nd201Ma from 0.51260 to 0.51262; 87Sr/86Sr201Maf from 0.70363 to 0.70398).

Low-Ti dolerites from both the Amazonas and Solimões basins contain biotite with extremely high Cl concentrations (up to 4.7 wt.%). They show that there is a strong correlation between host-rock lithology and Cl concentrations in biotite from the dolerites, and interpret this to reflect large-scale crustal contamination of the low-Ti magmas by halite-rich evaporites (Figure 21). The findings of Heimdal et al. (2019) support the hypothesis that sill-evaporite interactions increased volumes of volatile released during the emplacement of CAMP, and underlines the case for the active involvement of this LIP in the end-Triassic extinction event.


End-Cretaceous extinction event - Saline interactions driven by a bolide impact)

About 66 million years ago, at the end of the Cretaceous, one or possibly multiple large asteroids collided with the Earth. Paul Renne dated this impact at 66.043±0.011 million years ago on the Yucatan Peninsula, based on argon-argon dating (Renne, 2013). He went on to conclude that the main end-Cretaceous mass extinction event occurred within 32,000 years of this date. The bolide produced a crater some 150x180 km in diameter named the Chicxulub impact structure (Figure 23). Worldwide, a record of this event is evidenced by an iridium-enriched interval, in what is now called the Cretaceous-Tertiary Boundary Clay (KTBC) (Alvarez et al., 1980).

Other authors favouring additional bolide impacts at the end of the Cretaceous, such as Lerbekmo (2014) and Chaterjee (1997), have argued that some 40,000 years later, a much larger meteorite struck the shelf of the India-Seychelles continent, which was drifting northward in the southern Indian Ocean, producing a crater, some 450x600 km across, named the Shiva impact (Lerbekmo, 2014; Chaterjee, 1997). If a bolide-related feature, the Shiva crater was split by subsequent plate tectonism and today is not widely recognised by the scientific community as a K-T impact site.

As for any sound scientific hypothesis, there are ongoing arguments for the Chicxulub site being the "smoking gun" for the end-Cretaceous extinction event, many of these arguments and the supporting literature is discussed in (Kring, 2007). I shall focus on the saline geology of the Yucatan impact site, but recognise the arguments of some authors that the Shiva site is closely linked in time with the extrusion of the Deccan Traps. More importantly, voluminous Deccan Traps eruptions and intrusions had likely already degraded the end-Cretaceous atmosphere. A large bolide crashing into an anhydrite saltern in the palaeo-Gulf of Mexico was perhaps the coup de grâce for many already -stressed late Mesozoic communities (Wang et al., 2018)


Saline Geology of the Yucatan site

As it is covered by a Tertiary-age sediment carapace, there are no current evaporite outcrops on the Yucatan Peninsula. However, the region is underlain by thick Cretaceous anhydrite beds and has a nearby giant oil field, Cantarell, reservoired in a carbonate breccia trap possibly related to the impact (Grajales-Nishimura et al., 2000). Ongoing petroleum exploration means a number of exploration wells sample the Cretaceous geology of the Yucatan Peninsula (inset in Figure 24). Regionally, Cretaceous (Albian) saltern anhydrite beds extend from Guatemala, across the Yucatan Peninsula and north possibly to Veracruz. Depositionally similar, back-reef saltern beds typify the early Cretaceous (Albian) Ferry Lake Anhydrite, which extends across the onshore northern, and offshore eastern, Gulf of Mexico (Pittman, 1985; Petty, 1995; Loucks and Longman, 1982).

Pemex wells drilled on the Yucatan Peninsula, penetrate some 1300 –3500 m of bedded Tertiary, Cretaceous, and Jurassic strata (Figure 24; Ward et al., 1995). Palaeozoic metamorphic rocks are intersected at 2418 m in well Y4 and at 3202 m in well Y1. ‘‘Volcanic rock/andesite,’’ now broadly interpreted as an ‘‘impact-melt rock’’ or suevite is intersected in the lower parts of wells Y6 and C1. Based on the well geology there are seven major biostratigraphic-lithostratigraphic units in the Mesozoic section overlying basement rocks in the vicinity of the Chixulub impact site (Units A-F; Ward et al., 1995 and references therein). The regional depositional setting is typical of a Cretaceous carbonate platform, which at times became sufficiently isolated to deposit stacked anhydrite saltern beds in a rudistid back-reef setting (Warren, 2016; Chapter 5).

Unit A consists of red and grey sandstone, shale, and silty dolomite near the base of wells Y1, Y2, and Y4. This unit is Jurassic to Early Cretaceous in age (López Ramos, 1975).

Unit B is predominantly dolomite in its lower part, becomes rich in intercalated anhydrite and dolomite upward. Rock salt was cored in this unit in T1 at 2378–2381 m. Nummoloculina sp. was identified in Y2, suggesting an Albian age.

Unit C is predominantly shallow-water limestone in the lower part, becoming more dolomitic upward. At the base of unit C in wells Y1 and Y2 is a horizon with the large benthic orbitulinid foraminifer Dicyclina schlumbergeri? (Figure 23\4). Nummoloculina (N. heimi?) also occurs in the lower part of this unit in cores Y1 and Y4. Nearer the platform margin (Y4), the upper part of this unit contains a rudist limestone, but in other wells the rocks reflect more restricted depositional environments across the platform interior. Shallow-subtidal to intertidal dolomite makes up most of this section in Y5A, where anhydrite is interlayered with dolomite in the upper parts of the unit in Y1, Y2, and T1. The fossil assemblage indicates an Albian-Cenomanian age for unit C.

Unit D is predominantly somewhat deeper-subtidal limestone and marl, with horizons containing abundant tiny, mainly trochospiral planktic foraminifers as seen in samples from Y1, Y2-Y4, and Y5A.

Unit E consists of shallow-platform limestones with intervals containing abundant small planktic foraminifers. The unit contains rudist-bearing limestones considerd by López Ramos (1975) as Turonian, and a similar age is indicated by the presence of Marginotruncana pseudolinneiana and Dicarinella imbricata in samples from Y1, Y2, Y4, and Y5A.

Unit F consists of dolomitized shallow-platform limestone with benthic foraminifers. Abundant textularid and miliolid foraminifers are at the top of unit F (Fig. 2). The presence of Marginotruncana schneegansi and Globotruncana fornicata in well Y5A suggests a Santonian age for that part of this unit.

Unit G is a thick interval of breccia with abundant sand- to gravel-sized angular to subrounded fragments of dolostone, anhydrite, and minor limestones suspended in a dolomicrite matrix. The poorly-sorted fabric is similar to that of debris-flow deposits. López Ramos (1973) reported marl and limestone intercalations within the thick breccia from 1090 to 1270 m in well C1 (Figs. 1 and 2). In addition, Y4 and Y4 contain dolomite that may separate an upper breccia with rare or no planktic foraminifers from a lower breccia with abundant planktic foraminifers. Core in Y2 is composed of finely crystalline anhydrite, possibly also representing a less disturbed sedimentary layer or anhydrite block within the breccia interval.

Clasts of carbonate rocks in these breccias are fragments of many different kinds of dolostone and limestone, with different diagenetic histories. Anhydrite fragments typically make up 15%–20% of the breccia; much of the anhydrite is composed of tiny angular cleavage splinters. Some breccia layers contain grey-green fragments of altered volcanic ‘‘glass’’ and spherules. Other minor but significant constituents of the breccia are fragments of melt rock and basement as seen in Y6 (1295.5–1299 m), Y6 (1377–1379.5 m), and C1 (1393–1394 m). In addition, Hildebrand et al. (1991) found shocked quartz from Y6 (1208 –1211 m), and Sharpton et al. (1994) reported shock-deformed quartz and feldspar grains and melt inclusions in the dolomite-anhydrite breccia.

Planktic and benthic foraminifers are present in the breccia matrix and include Abathomphalus mayaroensis, Globotrun-canita conica, Rosita patelliformis, Pseudoguembelina palpebra, Racemiguembelina fructicosa, and Hedbergella monmouthensis, which indicate a late Maastrichtian (end-Cretaceous) age for formation of the breccia (Ward et al., 1995).

Climatic outcomes of the Yucatan impact

Widespread Jurassic anhydrites, hydrocarbon reservoirs and source rocks surround the Yucatan impact region; their vaporisation on bolide impact and rapid entry into the upper atmosphere added a good deal to the ensuing climatic mayhem (Figure 25) As we discussed for LIP emplacement, anhydrite decomposes at high temperatures, to form SO2 gas, CaO, and oxygen. Thermodynamic calculation and extrapolation using the free energy of formation of anhydrite and its reaction products as a function of temperature up to 1120°C (Robie et al., 1979), give an equilibrium pressure of 1 bar SO2 over the reaction:

2CaSO4 = 2CaO + 2S02 + O2

at a temperature around 1500°C (Brett, 1992; Yang and Ahrens, 1998). Experimental studies by Rowe et al. (1967) indicate that anhydrite decomposes in an open crucible above 1200°C. Temperatures higher than 1500°C are well in the range of temperatures of material subjected to strong shock in large bolide impacts, and at higher temperatures the equilibrium pressure would be considerably higher. Because the system is open, SO2 and oxygen would escape to the atmosphere as they did in the laboratory crucible of Rowe et al. (1967) and would continue to do so as long as post-impact temperatures were elevated.

Published discussions of the impact site geology all consider anhydrite as the evaporite mineralogy, with minor volumes of halite (well T1 in Figure 24). This lower salinity end of the evaporite series is typical of mega-sulphate settings, worldwide (Warren, 2016; Chapter 5) In addition, there is no evidence for hydrated potash salts in the region and this too is typical of starn salterns in a meg-sulphate basin. There is, however, the additional possibility that not all of the saltern gypsum had converted to anhydrite at the time of the impact. If so, this would have further detabilised and volatised the various lithologies at the site of the impact.


Intercalated carbonates, kerogens and other organic sediments at the collision site contributed additional CO2, CH4, H2O, and halocarbons to the atmosphere, as well as vast quantities of heat and particulates. The following discussion of the various contributors to climatic changes, driven by the Chicxulub impact, is taken mostly from Kring, 2007 (and contained references).

Acid rain; Because the Chicxulub impact occurred in a region with anhydrite, sulphurous vapour was injected into the stratosphere, producing sulphate aerosols and eventually sulphuric acid rain. Estimates of the amount of S liberated vary, consensus ranges from 7.5 × 1016 to 6.0 × 1017 g S, which would have produced 7.7 × 1014 to 6.1 × 1015 mol of sulphuric acid rain. In addition, the earth’s atmosphere was shock-heated by the impact event, producing nitric acid rain as well. Independent of the geology of the impact siter, the earth's atmosphere is heated when pierced by a bolide as the vapour-rich plume expands out from an impact site, and ejected debris rains through the atmosphere. In a Chicxulub-sized impact event, the ejecta debris is, estimated to produce ≈1×1014 mol of NOx in the atmosphere and, thus, ≈1×1015 moles of nitric acid rain. Impact-generated wildfires may have produced an additional ≈3×1015 mol of nitric acid. Sulphuric and nitric acid rain fell over a few months to a few years (Figure 25a).

Wildfires; Evidence of impact-generated fires is recovered from K/T boundary sequences worldwide in the form of fusinite pyrolitic polycyclic aromatic hydrocarbons, carbonised plant debris, and charcoal. The distribution of the fires is still poorly understood and may have had a restricted geographic distribution limited to the vicinity of the impact event, produced not by impact ejecta but by the direct radiation of the impact fireball which had a plasma core with temperatures over 10,000 °C. Several additional parameters influence the outcome (e.g., the trajectory of the impacting object, its speed, and mass of the ejecta). The amount of soot recovered from K/T boundary sediments (imply that the fires released ≈104 GT of CO2, ≈102 GT CH4 and 103 GT CO, which is equal to or larger than the amount of CO2 produced from vapourised target sediments. This likely had a severe effect on the global carbon cycle (Figure 25a).

Dust and aerosols in the atmosphere; Calculations suggest that dust and sulphate aerosols from the impact event, and soot from post-impact wildfires, caused surface temperatures to fall by preventing sunlight from reaching the surface where it was needed for photosynthesis. The base of the marine food chain, composed of photosynthetic plankton, collapsed. Slight increases or decreases in average water temperatures cannot extinguish photosynthetic plankton, nor the presence or absence of organisms higher up the food chain. Photosynthesisers are primarily affected by the availability of their energy source, light. Consequently, the loss of photosynthetic plankton following the Chicxulub impact event is evidence that sunlight was significantly blocked, whether it was by dust, soot, aerosols, or some other agent.

The timescale for particles settling through the atmosphere range from a few hours to approximately a year (Figure 25a, b). The time needed for the bulk of the dust to settle out of the atmosphere is ambiguous, however, because the size distribution of the dust is unclear. Some sites seem to be dominated by spherules ≈250 μm in diameter, which would have settled out of the atmosphere within hours to days. However, if there is a substantial amount of submicron material, then it may remain suspended in the atmosphere for many months. Soot, if it were able to rise into the stratosphere, would have taken similarly long times to settle. Soot that only rose into the troposphere, however, would have been flushed out of the atmosphere promptly by rain.

The dust, aerosols, and soot caused surface cooling after the brief period of atmospheric heating that immediately followed the impact. The magnitude of that cooling is unclear, however, because the opacity generated by the three components is uncertain and their lifetime in the atmosphere is also uncertain. Nonetheless, significant decreases in temperature of several degrees to a few tens of degrees have been proposed for at least short periods. Short-term cooling likely had a severe effect on the global carbon cycle, in what is popularly termed a “nuclear winter’ scenario (Figure 25).

Ozone destruction; Ozone-destroying Cl and Br is produced from the vaporised projectile, vaporised target lithologies, and biomass burning. Over five orders of magnitude more Cl than is needed to destroy today's ozone layer was injected into the stratosphere, compounded by the addition of Br and other reactants. The affect on the ozone layer may have lasted for several years, although it is uncertain how much of an effect it had on surface conditions. Initially, dust, soot, and NO2 may have absorbed ultraviolet radiation, and sulphate aerosols may have scattered the radiation. The settling time of dust was probably rapid relative to the time span of ozone loss, but it may have taken a few years for the aerosols to precipitate.

Greenhouse gases; Water and CO2 were produced from Chicxulub's target lithologies and the projectile, which could have potentially caused greenhouse warming after the dust, aerosols, and soot settled to the ground. Significant CO2, CH, and H2O were added to the atmosphere. Some of these components came directly from target materials. These include carbonates, which liberate CO2 when vaporised, and also includes hydrocarbons, the remainder of which has subsequently migrated into cataclastic dykes beneath the crater and impact breccias deposited along the Campeche Bank (e.g. Cantarell field). Water was liberated from the saturated sedimentary sequence and the overlying ocean (the lesser of the two sources).

The residence times of gases like CO2 are greater than those of dust and sulphate aerosols, so greenhouse warming may have occurred after a period of cooling. Estimates of the magnitude of the heating vary considerably, from an increase of global mean average temperature of 1 to 1.5 °C (based on estimates of CO2 added to the atmosphere by the impact) to ≈7.5 °C (based on measures of fossil leaf stomata).

Local and regional effects; The local and regional effects of the impact were enormous. Tsunamis radiated across the Gulf of Mexico, crashing onto nearby coastlines, and also radiated farther across the proto-Caribbean and Atlantic basins. Tsunamis were 100 to 300 m high when they crashed onto the gulf coast and ripped up sea floor sediments down to water depths of 500 m. The Gulf of Mexico region was also affected by the high-energy deposition of impact ejecta, density currents, and seismically-induced slumping of coastal sediments following magnitude 10 earthquakes. Tsunamis may have penetrated more than 300 km inland. The local landscape (both continental and marine) was buried beneath a layer of impact ejecta that was several hundred meters thick near the impact site and decreased with radial distance. Peak thicknesses along the crater rim may have been 600 to 800 m. Along the Campeche bank, 350 to 600 km from Chicxulub, impact deposits of ≈50 to ≈300 m are logged in the Cantarell boreholes.

Impact events also produce shock waves and air blasts that radiate across the landscape. Wind speeds over 1000 km/h are possible near the impact site, although they decrease with distance from the impact site. The pressure pulse and winds can scour soils and shred vegetation and any animals living in nearby ecosystems. Estimated radii of the area damaged by an air blast range from ≈900 to ≈1800 km.

Significant heat would have been another critical regional effect. Core temperatures in the plume rising from the crater were over 10,000° C, possibly high enough to generate fires out to distances of 1500 to 4000 km. The intense thermal pulse would have been relatively short-lived (5 to 10 min). Additional heating and spontaneous wildfires were ignited when impact ejecta fell through the atmosphere (3 to 4 days; Figure 25a).

The end-Cretaceous bolide impact had both short and long term effects on the Earth's climate and its atmospheric temperatures (Figure 25b). Over hours to days following impact, there was severe atmospheric heating as ejecta rained down through the atmosphere. This was following by a period of weeks to years of cooler temperatures as the atmosphere was polluted by SO2, NOx and soot from the impact preventing sunlight reaching the surface (nuclear winter scenario). Then, across time frame of decades to millennia, after the atmosphere cleared, increased CO2 levels drove a period of global warming. The legacy of the impact and the biotal recovery over the next few hundred thousand years is documented in a recent paper by Lowery et al., 2018. They showed that life reappeared in the basin just years after the impact and a high-productivity ecosystem was established within 30 kyr.

Extinction events intensified by heating evaporites

Evaporite salts are more chemically reactive at earth surface conditions than other sediments. Subsurface evaporites are prone to dissolution, alteration and reprecipition from the time they first precipitated and throughout their subsurface journeys in the diagenetic and metamorphic realms (Warren 2016). The same is true, but perhaps more so, if bedded salts are exposed to a heat source outside the normal geothermal gradient experienced in burial. Additional heat can come for the emplacement of igneous sills, magma bodies or the hot hydrothermal circulation it drives. Or it can come from near instantaneous heating to thousands of degrees associated with a bolide impact. Volatile products that result from this heating, as they enter the earth's atmosphere, can be inimical to life and include vast volumes of halocarbons, SO2, methane and CO2. Methane and CO2 come from kerogens and hydrocarbons stored in intercalated mudstones and limestones while volatilisation of carbonates can supply CO2.

The reactivity of evaporites and the vast volumes of volatiles released explains the intimate association of saline giants, heating and the three most devastating of the five major Phanerozoic extinction events.

Interestingly, two other events on the list of the "big five;" the Emeishan and late Devonian events (Figure 1) also have possible associations with heated evaporites. The Emeishan LIP intersects the edge of the anhydrite-rich Sichuan basin, while the 120km-diam., Late Devonian, Woodleigh bolide impacted the intracratonic Silurian Yaringa Fm. salts (including potash beds) on the coast of West Australia (SaltWork GIS database version 1.8 overlays, Chen et al., 2018; Glikson et al, 2005). But, before definitive conclusions can be made, more work is required to better tie down impact age, actual geographic extent of LIP emplacement, extent of evaporite breccias and evaporite volumes.

References

Alvarez, L. W., W. Alvarez, F. Asaro, and H. V. Michel, 1980, Extraterrestrial Cause for the Cretaceous-Tertiary Extinction: Science, v. 208, p. 1095.

Andreev, R. Y., V. N. Apollonov, G. A. Galkin, G. M. Drugov, M. A. Zharkov, Y. G. Mashovich, A. L. Protopopov, V. F. Sadovyi, and K. S. Khechoyan, 1986, The Potassium-Containing Horizons of the Nepa Basin: Soviet Geology and Geophysics, v. 27, p. 38-45.

Arndt, N., K. Lehnert, and Y. Vasil'ev, 1995, Meimechites: highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle: Lithos, v. 34, p. 41-59.

Beerling, D. J., M. Harfoot, B. Lomax, and J. A. Pyle, 2007, The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps: Philosophical Transactions of the Royal Society of London, ser. A, Mathematical and Physical Sciences, v. 365, p. 1843 –1866.

Benton, M. J., and A. J. Newell, 2014, Impacts of global warming on Permo-Triassic terrestrial ecosystems: Gondwana Research, v. 25, p. 1308-1337.

Black, B. A., L. T. Elkins-Tanton, M. C. Rowe, and I. U. Peate, 2012, Magnitude and consequences of volatile release from the Siberian Traps: Earth and Planetary Science Letters, v. 317–318, p. 363-373.

Black, B. A., E. H. Hauri, L. T. Elkins-Tanton, and S. M. Brown, 2014a, Sulphur isotopic evidence for sources of volatiles in Siberian Traps magmas: Earth and Planetary Science Letters, v. 394, p. 58-69.

Black, B. A., C. A. Shields, J.-F. Lamarque, J. T. Kiehl, and L. T. Elkins-Tanton, 2014b, Acid rain and ozone depletion from pulsed Siberian Traps magmatism: Geology, v. 42, p. 67-70.

Black, B. A., B. P. Weiss, L. T. Elkins-Tanton, R. V. Veselovskiy, and A. Latyshev, 2015, Siberian Traps volcaniclastic rocks and the role of magma-water interactions: Geological Society of America Bulletin, v. 127, p. 1437-1452.

Brett, R., 1992, The Cretaceous-Tertiary extinction: A lethal mechanism involving anhydrite target rocks: Geochimica et Cosmochimica Acta, v. 56, p. 3603-3606.

Burgess, S. D., S. Bowring, and S.-z. Shen, 2014, High-precision timeline for Earth’s most severe extinction: Proceedings of the National Academy of Sciences, v. 111, p. 3316.

Burgess, S. D., J. D. Muirhead, and S. A. Bowring, 2017, Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction: Nature Communications, v. 8, p. 164.

Cao, C.-Q., D.-X. Yuan, H. Zhang, L. Xiang, Y.-C. Zhang, Y. Wang, J. Wang, S.-Z. Shen, L. Mu, Q.-F. Zheng, Y.-S. Wu, X.-D. Wang, J. Ramezani, S. A. Bowring, J. Chen, D. H. Erwin, S. D. Schoepfer, C. M. Henderson, and X.-H. Li, 2018, A sudden end-Permian mass extinction in South China: GSA Bulletin, v. 131, p. 205-223.

Chaterjee, S., 1997, Multiple Impacts at the KT Boundary and the Death of the Dinosaurs in H. Wang, D. F. Branagan, O. Z., and X. Wang, eds., Comparative Planetology, Geological Education, History of Geosciences; Proceedings of the 30th Internional Geological Congress, 26, p. 31-545.

Chen, A., S. Yang, S. Xu, J. Ogg, H. Chen, Y. Zhong, C. Zhang, and F. Li, 2018, Sedimentary model of marine evaporites and implications for potash deposits exploration in China: Carbonates and Evaporites; https://doi.org/10.1007/s13146-018-0443-0

Czamanske, G. K., T. E. Zen'ko, V. A. Fedorenko, L. C. Calk, J. R. Burlahn, J. H. Bullock Jr, T. L. Fries, B.-S. W. King, and D. F. Siems, 1995, Petrographic and geochemical characterisation of ore-bearing intrusions of the Noril'sk type Siberia: with discussion of their origin: Resource Geology Special Issue, v. 18, p. 1-49.

Davies, J. H. F. L., A. Marzoli, H. Bertrand, N. Youbi, M. Ernesto, and U. Schaltegger, 2017, End-Triassic mass extinction started by intrusive CAMP activity: Nature Communications, v. 8, p. 15596.

De Min, A., E. M. Piccirillo, A. Marzoli, G. Bellieni, P. R. Renne, M. Ernesto, and L. S. Marques, 2003, The Central Atlantic Magmatic Province (CAMP) in Brazil: Petrology, Geochemistry, 40Ar/39Ar Ages, Paleomagnetism and Geodynamic Implications: The Central Atlantic Magmatic Province: Insights from Fragments of Pangea.

Garrett, D. E., 1995, Potash: Deposits, processing, properties and uses: Berlin, Springer, 752 p.

Glikson, A. Y., A. J. Mory, R. P. Iasky, F. Pirajno, S. D. Golding, and I. T. Uysal, 2005, Woodleigh, Southern Carnarvon Basin, Western Australia: history of discovery, Late Devonian age, and geophysical and morphometric evidence for a 120-km-diameter impact structure: Australian Journal of Earth Sciences, v. 52, p. 545 - 553.

Gonzaga, F. G., F. T. T. Gonçalves, and L. F. C. Coutinho, 2000, Petroleum geology of the Amazonas Basin, Brazil: modeling of hydrocarbon generation and migration, in M. R. Mello, and B. J. Katz, eds., Petroleum systems of South Atlantic margins, AAPG Memoir 73.

Goryainov, I. N., M. I. Mitroshin, T. S. Leonova, A. V. Nevskaya, T. K. Ivanova, and M. K. Ivanov, 1976, “Meteorite” paragenesis – moissanite, native iron, (diamond?) in traps of the northwest of the Siberian Platform (in Russian): Dokl Acad Nauk USSR, v. 2, p. 453–455.

Grajales-Nishimura, J. M., E. Cedillo-Pardo, C. Rosales-Dominguez, D. J. Morán-Zenteno, D. J. Alverez, P. Claeys, J. Ruíz-Morales, J. GArcía-Hernández, P. Padilla-Avila, and A. Sánchez-Ríos, 2000, Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields: Geology, v. 28, p. 307-310.

Heimdal, T. H., S. Callegaro, H. H. Svensen, M. T. Jones, E. Pereira, and S. Planke, 2019, Evidence for magma–evaporite interactions during the emplacement of the Central Atlantic Magmatic Province (CAMP) in Brazil: Earth and Planetary Science Letters, v. 506, p. 476-492.

Heimdal, T. H., H. H. Svensen, J. Ramezani, K. Iyer, E. Pereira, R. Rodrigues, M. T. Jones, and S. Callegaro, 2018, Large-scale sill emplacement in Brazil as a trigger for the end-Triassic crisis: Scientific Reports, v. 8, p. 141.

Herzberg, C., P. D. Asimow, N. Arndt, Y. Niu, C. M. Lesher, J. G. Fitton, M. J. Cheadle, and A. D. Saunders, 2007, Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites: Geochemistry, Geophysics, Geosystems, v. 8.

Hildebrand, A. R., D. A. Kring, W. V. Boynton, G. T. Penfield, M. Pilkington, A. Camargo Z, and S. B. Jacobsen, 1991, Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico: Geology, v. 19, p. 867-871.

Ibanez, D. M., R. Almeida-Filho, and F. P. Miranda, 2016, Analysis of SRTM data as an aid to hydrocarbon exploration in a frontier area of the Amazonas Sedimentary Basin, northern Brazil: Marine and Petroleum Geology, v. 73, p. 528-538.

Ivanov, A. V., H. He, L. Yan, V. V. Ryabov, A. Y. Shevko, S. V. Palesskii, and I. V. Nikolaeva, 2013, Siberian Traps large igneous province: Evidence for two flood basalt pulses around the Permo-Triassic boundary and in the Middle Triassic, and contemporaneous granitic magmatism: Earth-Science Reviews, v. 122, p. 58-76.

Ivashchenko, M. A., and V. V. Korabel'nikova, 1960, The Korshunovskoye deposit. In: Angaro-Ilimskie zhelezo-rudnie mestorozhdenia trappovoi formatsii yuzhnoi chasti sibirskoi platformy. Moscow. PuN. H. "Gosgeolthechizdat" [In Russian]

Jerram, D. A., H. H. Svensen, S. Planke, A. G. Polozov, and T. H. Torsvik, 2016a, The onset of flood volcanism in the north-western part of the Siberian Traps: Explosive volcanism versus effusive lava flows: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, p. 38-50.

Jones, M. T., D. A. Jerram, H. H. Svensen, and C. Grove, 2016, The effects of large igneous provinces on the global carbon and sulphur cycles: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, p. 4-21.

Jones, M. T., D. A. Jerram, H. H. Svensen, and C. Grove, 2016b, The effects of large igneous provinces on the global carbon and sulphur cycles: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, p. 4-21.

Kring, D. A., 2000, Impact Events and Their Effect on the Origin, Evolution, and Distribution of Life: GSA Today, v. 10.

Kring, D. A., 2007, The Chicxulub impact event and its environmental consequences at the Cretaceous–Tertiary boundary: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 255, p. 4-21.

Krivolutskaya, N. A., 2016, Siberian Traps and Pt-Cu-Ni Deposits in the Noril’sk Area, Springer, 364 p.

Kuznetsov, V. G., and V. Suchy, 1992, Vendian-Cambrian tidal and sabkha facies of the Siberian Platform: Facies, v. 27, p. 285-294.

Lerbekmo, J. F., 2014, The Chicxulub-Shiva extraterrestrial one-two killer punches to Earth 65 million years ago: Marine and Petroleum Geology, v. 49, p. 203-207.

Li, C., E. M. Ripley, A. J. Naldrett, A. K. Schmitt, and C. H. Moore, 2009, Magmatic anhydrite-sulphide assemblages in the plumbing system of the Siberian Traps: Geology (Boulder), v. 37, p. 259-262.

Lightfoot, P. C., and C. J. Hawkesworth, 1997, Flood basalts and magmatic Ni, Cu, and PGE sulphide mineralization: comparative geochemistry of the Noril'sk (Siberian Traps) and West Greenland sequences: Geophysical Monograph Series, v. 100, p. 357-380.

López Ramos, E., 1975, Geologic summary of the Yucatán Peninsula, in A. E. M. Nairn, and F. G. Stehli, eds., The ocean basins and margins, Volume 3, The Gulf of Mexico and the Caribbean: New York, Plenum Press, p. 257-282.

Marzoli, A., S. Callegaro, J. Dal Corso, J. H. F. L. Davies, M. Chiaradia, N. Youbi, H. Bertrand, L. Reisberg, R. Merle, and F. Jourdan, 2018, The Central Atlantic Magmatic Province (CAMP): A Review, in L. H. Tanner, ed., The Late Triassic World: Earth in a Time of Transition: Cham, Springer International Publishing, p. 91-125.

Mazurov, M., S. Grishina, V. Istomin, and A. Titov, 2007, Metasomatism and ore formation at contacts of dolerite with saliferous rocks in the sedimentary cover of the southern Siberian platform: Geology of Ore Deposits, v. 49, p. 271-284.

Mazurov, M. P., S. N. Grishina, A. T. Titov, and A. V. Shikhova, 2018, Evolution of Ore-Forming Metasomatic Processes at Large Skarn Iron Deposits Related to the Traps of the Siberian Platform: Petrology, v. 26, p. 265-279.

Milani, E. J., and P. V. Zalán, 1999, An outline of the geology and petroleum systems of the Paleozoic interior basins of South America: Episodes, v. 22, p. 199-205.

Naldrett, A. J., 1981, Nickel sulphide deposits: classification, composition, and genesis: Economic Geology, v. Seventy-fifth Anniversary Volume (1905-1980), p. 628-685.

Naldrett, A. J., 1993, Ni-Cu-PGE ores of the Noril'sk region Siberia: a model for giant magmatic sulphide deposits associated with flood basalts: Society of Economic Geologists Special Publication, v. 2, p. 81-123.

Naldrett, A. J., 1997, Key factors in the genesis of Noril'sk, Sudbury, Jinchuan, Voiseys Bay and other worldclass Ni-Cu-PGE deposits - Implications for exploration: Australian Journal of Earth Sciences, v. 44, p. 283-315.

Naldrett, A. J., 1999, World-class Ni-Cu-PGE deposits: key factors in their genesis: Mineralium Deposita, v. 34, p. 227-240.

Naldrett, A. J., 2004, Magmatic sulphide deposits :Geology, Geochemistry and Exploration, Spriger, 728 p.

Naldrett, A. J., 2005, A history of our understanding of magmatic Ni-Cu sulphide deposits: The Canadian Mineralogist, v. 43, p. 2069-2098.

Pang, K.-N., N. Arndt, H. Svensen, S. Planke, A. Polozov, S. Polteau, Y. Iizuka, and S.-L. Chung, 2013, A petrologic, geochemical and Sr-Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia: Contributions to Mineralogy and Petrology, v. 165, p. 683-704.

Peryt, T. M., N. M. Dzhinoridze, alstrok, S. as, V. M. Kovalevych, and O. Y. Petrychenko, 2005, The sulphur and oxygen isotopic composition of Lower Cambrian anhydrites in East Siberia: Geological Quarterly, v. 49, p. 235-242.

Petrichencko, O. I., 1988, Fiziko-khimicheskiye uslovia osadkoobrazovania v drevnikh solerodnykh basseynakh: Nauk. Dumka, Kiev.

Petty, A. J., 1995, Ferry Lake, Rodessa, and Punta Gorda Anhydrite Bed Correlation, Lower Cretaceous, Offshore Eastern Gulf of Mexico: Gulf Coast Association of Geological Societies Transactions, v. 45, p. 487-495.

Pirajno, F., 2007, Mantle plumes, associated intraplate tectonomagmatic processes and ore systems: Episodes, v. 30, p. 6-19.

Pittman, J. G., 1985, Correlation of beds within the Ferry Lake Anhydrite of the Gulf Coastal Plain: Transactions Gulf Coast Association of Geological Societies, v. 35, p. 251-260.

Polozov, A. G., H. H. Svensen, S. Planke, S. N. Grishina, K. E. Fristad, and D. A. Jerram, 2016, The basalt pipes of the Tunguska Basin (Siberia, Russia): High temperature processes and volatile degassing into the end-Permian atmosphere: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, p. 51-64.

Renne, P. R., A. L. Deino, F. J. Hilgen, K. F. Kuiper, D. F. Mark, W. S. Mitchell, L. E. Morgan, R. Mundil, and J. Smit, 2013, Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary: Science, v. 339, p. 684.

Ripley, E. M., C. Li, C. H. Moore, and A. K. Schmitt, 2010, Micro-scale S isotope studies of the Kharaelakh intrusion, Noril'sk region, Siberia: Constraints on the genesis of coexisting anhydrite and sulphide minerals: Geochimica et Cosmochimica Acta, v. 74, p. 634-644.

Robie, R. A., B. S. Heminway, and J. R. Fisher, 1979, Thermodynamic Properties of Minerals and Related Substances at 298.15K and 1 Bar ( 105 Pascals) Pressure and at Higher Temperatures: USGS Bull. 1452.

Rohde, R. A., and R. A. Muller, 2005, Cycles in fossil diversity: Nature, v. 434, p. 208-210.

Rowe, J. J., G. W. Morey, and C. C. Silber, 1967, The ternary system K2S04-MgSO,-CaSO4: J. Inorg. and Nucl. Chem, v. 29, p. 925-942.

Ryabov, V. V., A. Y. Shevko, and M. P. Gora, 2014, Trap Magmatism and Ore Formation in the Siberian Noril’sk Region: Volume 1. Trap Petrology, Springer, 390 p.

Sad, A. R., F. R. T. Lima, F. Wolf, J. A. M. Soares, and R. S. de Carvalho, 1982, Depósito Potassífero de Fazendinha – Bacia do Médio Amazonas: Congresso Brasileiro de Geologia, 32 Salvador, Bahia. Anais, V. 3, p. 1086-1099.

Schofield, N., I. Alsop, J. Warren, J. R. Underhill, R. Lehné, W. Beer, and V. Lukas, 2014, Mobilizing salt: Magma-salt interactions: Geology, v. 42, p. 599-602.

Sepkoski, J. A., 2002, Compendium of Fossil Marine Animal Genera, in D. Jablonski, and M. Foote, eds., Bull. Am. Paleontol. no. 363 (Paleontological Research Institution, Ithaca, 2002).

Sepkoski Jr., J. J., 1996, Patterns of Phanerozoic extinction: a perspective from global data bases, in O. H. Walliser, ed., Global Events and Event Stratigraphy.: Berlin, Springer-Verlag, p. 35-52.

Sharpton, V. L., B. C. Schuraytz, and L. E. Marıín, 1994, Chicxulub ejecta deposits: Their importance for understanding the size and devastation of the KT impact event: : Geological Society of America Abstracts with Programs, v. 25, p. 334.

Soloviev, S. G., 2010, Iron Oxide Copper-Gold and Related Mineralisation of Siberian Craton, Russia 1 - Iron Oxide Deposits in the Angara and Ilim River Basins, South-Central Siberia, in T. M. Porter, ed., Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, v. 4: Adelaide PGC Publishing, p. 495-514.

Spiridonov, E. M., 2010, Ore-magmatic systems of the Noril'sk ore field: Russian Geology and Geophysics, v. 51, p. 1059-1077.

Svensen, H., S. Planke, A. G. Polozov, N. Schmidbauer, F. Corfu, Y. Y. Podladchikov, and B. Jamtveit, 2009, Siberian gas venting and the end-Permian environmental crisis: Earth and Planetary Science Letters, v. 277, p. 490-500.

Svensen, H. H., S. Frolov, G. G. Akhmanov, A. G. Polozov, D. A. Jerram, O. V. Shiganova, N. V. Melnikov, K. Iyer, and S. Planke, 2018, Sills and gas generation in the Siberian Traps: Philosophical Transactions Royal Society A, v. 376.

Szatmari, P., R. S. Carvalho, and I. A. Simoes, 1979, A comparison of evaporite facies in the late Paleozoic Amazon and the Middle Cretaceous South Atlantic salt basins: Economic Geology, v. 74, p. 432-447.

Thomaz Filho, A., A. M. P. Mizusaki, and L. Antonioli, 2008, Magmatism and petroleum exploration in the Brazilian Paleozoic basins: Marine and Petroleum Geology, v. 25, p. 143-151.

Thordarson, T., S. Self, D. J. Miller, G. Larsen, and E. G. Vilmundardóttir, 2003, Sulphur release from flood lava eruptions in the Veidivötn, Grímsvötn and Katla volcanic systems, Iceland: Geological Society, London, Special Publications, v. 213, p. 103.

Visscher, H., C. V. Looy, M. E. Collinson, H. Brinkhuis, J. H. A. van Konijnenburg-van Cittert, W. M. Kürschner, and M. A. Sephton, 2004, Environmental mutagenesis during the end-Permian ecological crisis: Proceedings of the National Academy of Sciences of the United States of America, v. 101, p. 12952.

Von Der Flaass, G. S., and V. I. Nikulin, 2000, Atlas of ore field structures of iron-ore deposits: Irkutsk State University Publish Irkutsk, Irkutsk.

Walker, R. J., J. W. Morgan, M. F. Horan, G. K. Czamanske, E. J. Krogstad, V. A. Fedorenko, and V. E. Kunilov, 1994, Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia: Geochimica et Cosmochimica Acta, v. 58, p. 4179-4197.

Wang, C., L. Zhang, Q. Wang, X. Wan, Y. Gao, P. B. Wignall, and T. Kluge, 2018, Deccan volcanism caused coupled pCO2 and terrestrial temperature rises, and pre-impact extinctions in northern China: Geology, v. 46, p. 271-274.

Ward, W., G. Keller, W. Stinnesbeck, and T. Adatte, 1995, Yucatán subsurface stratigraphy: Implications and constraints for the Chicxulub impact.: Geology, v. 23, p. 873-876.

Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

Wignall, P. B., 2001, Large igneous provinces and mass extinctions: Earth-Science Reviews, v. 53, p. 1-33.

Wolf, F. A. M., C. A. P. R. Dantas, J. C. Pereira, V. P. Silva, and J. A. M. Soares, 1986, Depósito de Arari, uma nova descoberta de sais de potássio na Amazônia: Congresso Brasileiro de Geologia, 34 Goiana, Goiás. Anais,, v. 6, p. 2182-2185.

Wooden, J. L., G. K. Czamanske, R. M. Bouse, A. P. K. Likhachev, V. E., and V. Lyul'ko, 1992, Pb isotope data indicate a complex, mantle origin for the Noril'sk-Talnakh ores, Siberia: Economic Geology, v. 87, p. 1153-1165.

Yang, W. B., and T. J. Ahrens, 1998, Shock vaporization of anhydrite and global effects of the K/T bolide: Earth & Planetary Science Letters, v. 156, p. 125-140.

Zharkov, M. A., 1984, Paleozoic salt bearing formations of the world: Berlin, Springer Verlag, 427 p.


 

Evaporite interactions with magma Part 2 of 3: Nature of volatile exhalations from saline giants?

John Warren - Saturday, March 16, 2019

 

Introduction

This article discusses general mechanisms of earth-scale volatile entry into the ancient atmosphere during events that involved rapid and widespread heating of saline giants. It develops this notion by looking at whether volumes of volatiles escaping to the atmosphere are enhanced by either the introduction of vast quantities of molten material to a saline giant or the thermal disturbance of that salt basin by bolide impacts. This begins a discussion of the contribution of heated evaporites in two (or three if the Captitanian is counted as a separate event) of the world's five most significant extinction events. It also looks at possible evaporite associations with a substantial bolide impact that marks the end of the Cretaceous. The next article presents the geological details and implications of the various magma-evaporite-volatile associations tied to major extinction events.

As we have seen for evaporite interactions with giant and supergiant volumes of commodities in particular deposits, such as hydrocarbons, base metals (Cu, Pb-Zn and IOCG deposits) evaporites do not form a commodity accumulation. But if evaporites are involved in the accumulation and enrichment processes, the size and strength of the accumulation are much improved. Because of their high reactivity compared to the kinetic stability at and near  thelithosphere's surface across most other lithologies, evaporite act not as creators of enrichment but as facilitators of enrichment (Warren, 2016 Chapters 9, 10, 14, 15 and Salty Matters, March 31, 2017).


End-Permian event

The end-Permian extinction event, colloquially known as the Great Dying, occurred around 252 Ma (million years) ago, and defines the boundary between the Permian and Triassic geologic periods, as well as between the Palaeozoic and Mesozoic eras. It is the Earth's most severe extinction event, when up to 96% of all marine species, 70% of terrestrial vertebrate species disappeared (Table 1, Figure 1). It also involves the only known mass extinction of a number of insect species (≈25%). Some 57% of all biological families and 83% of all genera became extinct. The end-Cretaceous extinction, which marks the demise of dinosaurs, is less severe, although it probably has a stronger hold on the western zeitgeist, while on land, the end-Triassic event marks the ascendancy of the dinosaurs.


Suggested mechanisms driving the end-Permian extinction event include; massive volcanism centred on the Emeishan and Siberian Traps and the ensuing coal or gas fires and explosions, along with a runaway greenhouse effect that was triggered by temperature increases in marine waters (Figure 2). It also may have involved one or more large meteor impact events and a rise in oceanic water temperatures that drove a sudden release of methane from the sea floor due to methane-clathrate dissociation.

The end-Permian event follows on closely from the Capitanian (Emeishan) extinction event when in south China fusulinacean foraminifers and brachiopods lost 82% and 87% of species, respectively (Bond et al., 2015). Proximity in time of the two events may explain why the breadth of the end-Permian extinction event was so severe. The Earth's biota was still recovering from the Emeishan event when the vicissitudes of the End-Permian calamity further decimated the world's biota.

Both the Emeishan and end-Permian extinction events tie to elevated mercury levels in sediments that encompass their respective boundaries (Grasby et al., 2016). Astride both boundaries, the mercury stratigraphy shows relatively constant background values of 0.005–0.010 μg g–1. However, there are notable spikes in Hg concentration over an order of magnitude above background associated with the two extinction events. The Hg/total organic carbon (TOC) ratio shows similar large spikes, indicating that they represent a real increase in Hg loading to the environment. These Hg loading events are associated with enhanced Hg emissions created by the outflows of the Emeishan and end-Permian large igneous province (LIP) magmas.

Interestingly, there is indirect evidence for a synchronous antipodeal impact crater that some argue may have instigated the Siberian volcanism, in much the same way that the end-Cretaceous bolide impact on the Yucatan Peninsula is considered by some to be the antipodeal driver of the Deccan Trap volcanism (von Frese et al., 2009). Other contributing, but likely more gradual tiebacks to the Great Dying, include sea-level variations, increasing oceanic anoxia, increasing aridity tied to the accretion of the Pangean supercontinent, and shifts in ocean circulation driven by climate change (Figure 2).

End-Triassic event

The end-Triassic extinction event, some 201.3 Ma, defines the Triassic-Jurassic boundary. In the oceans, a whole class (conodonts) and 23-34% of marine genera disappeared. On land, all archosaurs other than crocodylomorphs (Sphenosuchia and Crocodyliformes) and Avemetatarsalia (pterosaurs and dinosaurs), some remaining therapsids, and many of the large amphibians became extinct. About 42% of all terrestrial tetrapods went extinct (Figure 3). This event vacated terrestrial ecological niches, allowing the dinosaurs to assume the dominant roles in the Jurassic period. It happened in less than 10,000 years and occurred just before the Pangaean supercontinent started to break apart (Tanner, 2018).


The extinction event marks a floral turnover as well. About 60% of the diverse monosaccate and bisaccate pollen assemblages disappear at the T-J boundary, indicating a significant extinction of plant genera. Early Jurassic pollen assemblages are dominated by Corollina, a new genus that took advantage of the empty niches left by the extinction.

Worldwide the end-Triassic extinction horizon is marked by perturbations in ocean and atmosphere geochemistry, including the global carbon cycle, as expressed by significant fluctuations in carbon isotope ratios (Korte et al., 2019). At this time the Central Atlantic Magmatic Province (CAMP) volcanism triggered environmental changes and likely played a crucial role in this biotic crisis (Schoene et al., 2010). Biostratigraphic and chronostratigraphic studies link the end-Triassic mass extinction with the early phases of CAMP volcanism, and notable mercury enrichments in geographically distributed marine and continental strata are shown to be coeval with the onset of the extrusive emplacement of CAMP (Percival et al. 2017; Marzoli et al., 2018). Sulphuric acid induced atmospheric aerosol clouds from subaerial CAMP volcanism can explain a brief, relatively cool seawater temperature pulse in the mid-paleolatitude Pan-European seaway across the T–J transition. The occurrence of CAMP-induced carbon degassing may explain the overall longterm shift toward much warmer conditions.

End-Cretaceous event

The end-Cretaceous extinction event defines Cretaceous-Tertiary (K–T) boundary, and was a sudden mass extinction event some 66 million years ago. Except for some ectothermic species, such as the leatherback sea turtle and crocodiles, no tetrapods weighing more than 25 kilograms survived. The K-T event marked the end of the Cretaceous period and with it, the entire Mesozoic Era, opening the Cenozoic Era.

A wide range of species perished in the K–T extinction, the best-known being the non-avian dinosaurs. It also destroyed a plethora of other terrestrial organisms, including certain mammals, all pterosaurs, some birds, lizards, insects, and plants. In the oceans, the extinction event killed off plesiosaurs and the giant marine lizards (Mosasauridae) as well as devastating fish, sharks, molluscs (especially ammonites, which became extinct) populations, and many species of plankton. It is estimated that 75% or more of all species on Earth vanished in the end-Cretaceous event.

In its wake, the same extinction event also provided evolutionary opportunities as many groups underwent remarkable adaptive radiation—sudden and prolific divergence into new forms and species within the disrupted and emptied ecological niches. Mammals in particular diversified in the Paleogene, evolving new forms such as horses, whales, bats, and primates. Birds, fish, and perhaps lizards also radiated in newly vacant niches.


In the geologic record, the K–T event is marked by a thin layer of sediment called the K–Pg (Cretaceous - Paleogene) boundary, that is found throughout the world in both marine and terrestrial rocks. The boundary clay shows high levels of the metal iridium and is widely interpreted as indicating the impact of a massive comet or asteroid 10 to 15 km (6 to 9 mi) wide some 66 million years ago (Figure 4a,b). The impact devastated the global environment, mainly through a lingering impact winter, which halted photosynthesis in plants and plankton.

The impact hypothesis, also known as the Alvarez hypothesis (Alvarez et al., 1980), was bolstered by the discovery of the 180-kilometer-wide (112 mi) Chicxulub crater in the Gulf of Mexico in the early 1990s, which provided conclusive evidence that the K–Pg boundary clay represented debris from an asteroid impact. In a 2013 paper, Paul Renne dated the impact at 66.043±0.011 million years ago, based on argon-argon dating (Renne, 2013). He went on to conclude that the main end-Cretaceous mass extinction event occurred within 32,000 years of this date. A 2016 drilling project into the Chicxulub peak ring, confirmed that the peak ring was comprised of granite, likely ejected within minutes from deep in the earth, but the well contained hardly any anhydrite/gypsum, the usual sulphate-containing seafloor rock across the region (Figure 4a, b). As we shall see in part 3, the missing CaSO4 was vaporised in the impact and dispersed as sulphurous aerosols into the atmosphere, causing longer-term deleterious effects on the climate and food chain. Another causal or contributing factors to the end-Cretaceous extinction event may have been the synchronous outflows of the Deccan Traps and other volcanic eruptions, so driving climate change, and possibly sea level change (von Frese et al., 2009).

Volatiles released when cooking saline giants and associated organic-rich sediments

Particular sets of assimilations and metamorphic alterations of evaporites occur within the explosive milieu associated with both igneous interactions and pressurised heating of salts tied to a bolide impact. Any carbonate and organic matter layers present in the saline sequence or adjacent strata generates additional volatiles that will quickly enter the earth's atmosphere. Figure 5 is a schematic of the estimated amount of volatiles released during contact metamorphism of different types of sedimentary rocks in contact with an igneous sill or magma body (after Ganino et al., 2009; Pang et al., 2013). More catastrophic volumes of similar volatile suites enter the atmosphere if a large bolide impacts a region underlain by a saline giant.


Hence, salty interactions must be considered and quantified when attempting to understand earth-scale environmental changes whenever large evaporite masses are caught up in regions of LIP emplacement or bolide impact. In such areas:

  • Basalt and granitoids do not release large volumes of volatiles, as compared to the amounts of volatiles that are released by the heating or assimilation of saliniferous country rock (heat transfer and hydrothermal circulation).
  • Most porous sandstones and organic-lean shales caught up in a contact aureole or consumed in a magma, release water vapour; a release that has little effect on global climate.
  • During desulphation of a magma, gypsum or anhydrite masses are assimilated into a rising magma chamber or the emplacement of a thick sill. If anhydrite beds are consumed (melted and absorbed) by a magma batholith, the reaction releases abundant SO2 constituting up to 47 wt% of the bedded sulphate (Gorman et al., 1984). Direct melting requires high temperatures (≈ 1300- 1400 °C). Such widespread desulphation of thick Devonian anhydrite beds occurred during the emplacement of the supergiant Noril'sk nickel deposit in Siberia (Black et al., 2014; Warren, 2016, Chapter 16).
  • But such elevated temperatures (≈1400°C) are not typical of most contact aureoles where a sill or dyke intrudes anhydritic country rock. However, similar high-volume SO2 releases can proceed at temperatures as low as 615°C if the anhydrite is impure and contains interlayers rich in organics and hydrocarbons (e.g., West and Sutton, 1954; Pang et al., 2013). This is especially so if the interacting calcium sulphate is gypsum (hydrated salt) rather than anhydrite. Experiments by Newton and Manning (2005) demonstrated that the solubility of anhydrite increases enormously with NaCl activity (salinity) in hydrothermal solutions at ≈600 to 800°C (Figure 6).


  • Pure limestone contains large amounts of CO2, but like anhydrite the thermal decomposition of limestone or dolomite into CaO, MgO and CO2 takes place at high temperatures (>950 °C) that are typical when blocks of sedimentary carbonate are assimilated into a magma chamber, but less typical of contact aureoles tied to dykes and sills. Impure limestones can release large amounts of CO2 (up to 29 wt%) during the formation of calc-silicates in the contact aureole at moderate temperatures of 450–500 °C. As early as 1940, Bowen documented the release of CO2 by decarbonisation reactions during progressive metamorphism of siliceous dolomites (Bowen, 1940)
  • Likewise, devolatilization of fine-grained calcareous and saline sedimentary rocks during contact metamorphism directly generates fluids rich in CO2 (i.e., decarbonisation) and SO2 (i.e., desulphatation), which in theory can enter the magmatic system.
  • When heated at a relatively low temperature (<300-400 °C), contact metamorphism and hydrothermal leaching of bituminous halite and organic-carbon-rich saline mudstones releases large volumes of chlorohalogens and methane (Visscher et al., 2004; Beerling et al., 2007). Halocarbon compounds (aka halogenated hydrocarbons) are chemicals in which one or more carbon atoms are linked by covalent bonds with one or more halogen atoms (fluorine, chlorine, bromine or iodine). Methyl chloride (CH3Cl) and methyl bromide (CH3Br) are commonplace halocarbons when a halite-dominant saline giant interacts with igneous sill emplacement. When thermally-derived chlorohalogens enter the upper atmosphere, they tend to be reactive and will degrade ozone.
  • Buring coal and coal gas release abundant CO2. Depending on its grade, coal can ignite at temperatures between 400-530°C. Methane will auto-ignite at temperatures around 550-600°C and in an oxygenated setting produces large volumes of carbon dioxide and water vapour. Flashpoints are much lower than these ignition temperatures.
  • Sulphidic (pyritic) sediments release abundant SO2 when heated at lower temperatures (<400°C).
  • Heating of hydrated salts at moderate temperatures (90-250°C) can release pressurised pulses of hypersaline chloride or sulphate brine, with the dominant ionic proportions dependent on predominant hydrated salt; e.g., carnallite incongruently alters as it releases an MgCl2 brine, gypsum incongruently alters as it releases a Ca-SO4 brine (see part 1). Such pressurised pulses are essential in the generation of explosive breccia pipes sourced at the sill penetration level in the hydrated evaporite interval (discussed in detail for the Siberian Traps in part 3).
  • Getting volatiles into the atmosphere

    When a saline giant is heated during emplacement of a large igneous province (LIP) or during the impact of a large bolide, it and adjacent carbonates and organic-rich mudstones release large volumes of volatiles that can have short and long term harmful effects on the Earth's biosystems (Black et al., 2012, 2014; Jones et al., 2016; Part 3 this series). The volume of volatiles released to the atmosphere by these interactions, especially sulphurous products (SO2, H2S), thermogenic CH4, organohalogens and CO2, are considered primary contributors to three or four of the major extinction events outlined in Figure 1, and perhaps others, as discussed in part 3.

    Height and volume of various volatile injections into the layers of Earth's atmosphere controls the longevity and intensity of climatic effects and are tied to the chemistry of particular volatiles (Figure 7; Textor et al., 2003; Robock, 2000). The low concentration of water in typical modern volcanic plumes results in the formation of relatively dry aggregates entering the atmosphere. More than 99% of these aggregates are frozen because of their fast ascent to low-temperature regions of the atmosphere. With increased salinities, the salinity effect increases the amount of liquid water attaining the stratosphere by one order of magnitude, but the ice phase is still highly dominant. Consequently, the scavenging efficiency for HCl is very low, and only 1% is dissolved in liquid water.


    Scavenging by ice particles via direct gas incorporation during diffusional growth is a significant process for volatile transport. The salinity effect increases the total scavenging efficiency for HCl from about 50% to about 90%. The sulfur-containing gases SO2 and H2S are only slightly soluble in liquid water; however, these gases are incorporated into ice particles in the atmosphere with an efficiency of 10 to 30%. Despite scavenging, more than 25% of the HCl and 80% of the sulphur gases reach the stratosphere during a more intense modern explosive eruption because most of the particles containing these species are typically lifted there by the force of the eruption (Figure 7b).

    Sedimentation of the particles tends to remove the volcanic gases from the stratosphere. Hence, the final quantity of volcanic gases injected in a particular eruption depends on the fate of the particles containing them, which is in turn dependent on the volcanic eruption intensity and environmental conditions at the site of the eruption.

    Today, volcanically-derived SO2 and H2S are the dominant sources for sulphur species in the atmosphere (Jones et al., 2016; Robock, 2000). Conversion of SO2 to aerosols is one of the critical drivers of climatic cooling during recent eruptions (Figure 7a; Robock, 2000). For SO2 to be effective in causing cooling in the atmosphere, escaping hydrogen sulphide quickly oxidises to SO2. Over hours to weeks following its eruptive escape the ongoing reaction of SO2 with atmospheric H2O forms a H2SO4 (sulphuric acid) aerosol, and this is a major cause of the acid rains tied to volcanism (Figure 7a, b).

    Tropospheric sulphate aerosols have an atmospheric lifetime of a couple of weeks due to the rapid incorporation as precipitation into the hydrological cycle (Figure 7b; Robock, 2000). However, if the intensity of the escaping volatile plume is capable of injecting sulphurous material above the tropopause into the stratosphere, then due to the lack of removal by precipitation, the lifetimes of sulphurous aerosols and the associated cooling effects are considerably extended (years rather than weeks: Figure 7a versus 7b).

    Modern eruptions

    World-scale cooling has been observed following a number of modest (by large igneous province standards) volcanic eruptions over the past few centuries (Figure 8; Bond and Wignall, 2014; Sigurdsson, 1990; and references therein). A recent example is provided by the Mount Pinatubo eruption of 1991, which injected 20 megatons of SO2 more than 30 km into the stratosphere. The result was a global temperature decrease approaching 0.5 °C for three years (although this cooling was probably exacerbated contemporaneous Mount Hudson eruption in Chile). One of the largest historical eruptions occurred in 1783-1784 from the Laki fissure in Iceland when a ≈15 km3 volume of basaltic magma was extruded, releasing ≈122 Mt of SO2, 15 Mt of HF, and 7 Mt of HCl. Laki’s eruption columns extended vertically up to 13 km, injecting sulfate aerosols into the upper troposphere and lower stratosphere, where they reacted with atmospheric moisture to produce ≈200 Mt of H2SO4. This aerosol-rich fog hung over the Northern Hemisphere for five months, leading to short-term cooling, and harmful acid rain in both Europe and North America. Additionally, HCl and HF emissions damaged terrestrial life in Iceland and mainland Europe, as this low-level fluorine-rich haze stunted plant growth and acidified soils.

    By causing or aiding in the collapse of food chains during the more intense sulphurous releases involved in the heating of large volumes of anhydrite held in ancient saline giants, vast quantities of acid rain may have killed much of the vegetation on land and photosynthetic organisms in the oceans during the three extinction events discussed in part 3.


    Halocarbons

    For halocarbons to form in a volcanic eruption requires the combination halogens with organic matter/methane or other hydrocarbons. We shall consider the levels and origins of two of the more common halocarbons in today's atmosphere; methyl chloride (CH3Cl) and methyl bromide (CH3Br) although many other species of halogenated hydrocarbons are present both naturally and anthropogenically (Schwandner, 2002; Visscher et al., 2004).

    The average Cl concentration of the Earth has been estimated to be 17 ppm (Worden, 2018 and references therein). Chlorine is the dominant anion in seawater, most modern and ancient evaporite beds and associated brines. Chlorine is present in most igneous rocks at low concentrations with little difference in level shown between granite and basic igneous rocks (both have a Cl- concentration of about 0.02%). However, igneous glass typically has higher Cl concentrations (≈0.08%). Chlorine is concentrated within any residual vapour phase during volcanic eruptions so can be independent of the volatiles created by heating of saline giants. Without the latter, the contribution of volcanically-erupted Cl to the atmosphere is still considerable. For example, the estimated current global volcanic emission of Cl is between 0.4 and 170 mt/year, while individual eruptions can produce hundreds of kilotons of Cl. For example, in 1980, St Helens emitted 670 kt of Cl into the atmosphere.

    In crystalline igneous rocks Br is found at low concentrations, typically <1 ppm in mid-ocean ridge basalts (MORB) (Worden, 2008 and references)). The average Br concentration of the Earth has been estimated to be 0.05 ppm. Chlorine/Bromine ratios are typically between 200 and 1000 in igneous rocks. Bromine is, however, found at relatively high concentrations (up to 300 ppm) in melt inclusions and matrix glass in acid igneous rocks since it is a highly incompatible element that does not easily sit within silicate, oxide or sulphide minerals. Bromine is concentrated within any residual vapour phase during volcanic eruptions. Based on experimentally-derived fractionation factors for halogens in volcanic materials, crustal average halogen concentrations, and measured amounts of Cl emitted from volcanoes, it can be concluded that the contribution of volcanically-erupted Br to the atmosphere is considerable. For example, the estimated current global volcanic emission of Br is between 2.6 and 78 kt while individual eruptions (e.g., St Helens in 1980) can emit 2.4–5.6 kt.

    The hinterlands of sedimentary basins that predominantly enriched in primary igneous rocks will provide only small quantities of Br into the sediment supply but rocks enriched in glass-bearing igneous rocks may supply relatively greater amounts of Br (Worden, 2018). Bromine is found in sedimentary basins as dissolved Br-, in solid solution in halite (NaClxBr1−x), or in less common salts resulting from potash-facies evaporites, such as sylvite. Bromine is also associated with organic-rich sediments, especially in marine settings, including organic-rich mudstone and coal. At a concentration of 65 mg/L, Br- is the second most abundant halogen in modern seawater.

    Organic matter and its more evolved forms –kerogen and hydrocarbons– are typical of most large evaporite basins. Mesohaline carbonates interlayered with anhydrite and halite beds can entrain high levels of organic matter to form high-yield source rocks, while the brine inclusions in some halites contain high amounts of volatile hydrocarbons and pyrobitumens. Evaporite beds composed of anhydrite or halite make excellent seals holding back large volumes of hydrocarbons (for literature documentation of these observations see Warren, 2016, Chapters 9 and 10). In combination, saline giants and their heat-responsive lithologies will contain vast volumes of potential volatiles, including halocarbons.

    Ozone (O3) destruction

    When halocarbons enter the stratosphere, they decimate the ozone layer, allowing harmful levels of ultraviolet (UV) radiation to reach the earth's surface (Figures 7a, 9a). Ozone is destroyed by the entry of a number of free radical catalysts into the stratosphere; today the most important catalysts are the hydroxyl radical (OH), nitric oxide radical (NO), chlorine radical (Cl) and the bromine radical (Br). Each radical is characterised by an unpaired electron in its molecular structure and is thus extremely reactive. All of these radicals have both natural and man-made sources; at present, most of the OH and NO in the stratosphere is naturally occurring, but human activity has drastically increased the levels of chlorine and bromine.

    The elements that form radicals in the stratosphere are found in stable organic compounds, especially halocarbons, which reach the stratosphere without being destroyed in the troposphere due to their low reactivity. Once in the stratosphere, the Cl and Br atoms are released from the parent halocarbon by the action of ultraviolet light.


    Ozone (O3) is a highly reactive molecule that quickly reduces to the more stable oxygen (O2) form with the assistance of a catalyst (radical). Cl and Br atoms destroy ozone molecules through a variety of catalytic cycles. The simplest example of such a reaction is when a chlorine atom reacts with an ozone molecule, taking an oxygen atom to form chlorine monoxide (ClO) and leaving behind an oxygen molecule (O2) (Figure 9b). The ClO can then react with another molecule of ozone, once more releasing the chlorine atom as ClO, so far yielding two molecules of oxygen. This ClO reaction can be repeated until the ClO is flushed from the stratosphere (Figure 9b, Fahey, 2007)

    Thus the overall effect of halocarbons entering the stratosphere is a decrease in the amount of ozone. A single chlorine radical can continuously destroy ozone for up to two years (this the time scale for its transport back down into the troposphere; Figure 7a). But there are other stratopheric reactions that remove CLO from this catalytic cycle by forming reservoir species such as hydrogen chloride (HCl) and chlorine nitrate (ClONO).

    Bromine radicals are even more efficient than chlorine at destroying ozone on a per-atom basis, but at present there is much less bromine than chlorine in the atmosphere. Laboratory studies have shown that fluorine and iodine atoms can participate in similar catalytic cycles. However, fluorine atoms react rapidly with water and methane to form strongly bound HF in the Earth's stratosphere, while organic molecules containing iodine react so quickly in the lower atmosphere that they do not reach the stratosphere in significant quantities.

    Halocarbon concentrations below the tropopause are always higher by several orders of magnitude than in the stratosphere, which contains the seasonally and locally variable ozone layer responsible for absorption of incident solar UV radiation (Schwandner, 2002). Penetration of the tropopause allows the ascent of long-lived halocarbons and today occurs primarily as a result of rising tropical air masses in a Hadley cell, rare turnover events, or large Plinian volcanic eruptions.

    Over the two to three years a chlorine or bromine radical can remain in the stratosphere, it reacts with ozone and converts it to oxygen. It has been estimated that a single chlorine atom can react with an average of 100,000 ozone molecules before it is removed from the catalytic cycle (Figure 8b. Other halocarbon-enabled reactions drive ozone destruction (these catalysts are derived from anthropogenic CFCs and other industrial halocarbons). Over the past half-century, our anthropogenic focus on ozone destruction from industrial chemicals has driven the public's understanding into to the much-needed legislated prevention of the entry of additional industrial halocarbons (especially CFCs) into the stratosphere.


    Implications

    However, there are additional deep-time implications for the health of the Earth's biota when natural events of the past drastically increased the amount of halocarbons entering the stratosphere, along with increased levels of sulphurous volatiles and greenhouse gases. We know modern volcanic exhalations containing relatively high levels of chlorine and bromine. But times of intense magmatic/volcanogenic or bolide heating of evaporites in a saline giant will contribute even greater volumes of halocarbons to the stratospheric levels of the atmosphere (Figure 10). If coals and peats are also present (typically not in the saline portion of the basin's sediment fill), then the heating of these additional organic-rich sediments will contribute even more carbon to the vast volumes of the halocarbons created by heating of the evaporites. Heating reactions in the saline giant and associated deposits can also supply elevated levels of the greenhouse gases CO2 and CH4. Explosive volcanism tied to the emplacement of LIPs in the region of a saline giant or the atmosphere-scale disturbance linked to the impact of a large bolide in an area underlain by a saline giant are efficient mechanisms to move large volumes of halocarbons, sulphurous volatiles and greenhouse gasses to the troposphere. The third article in this series will document the specific evaporite geology that contributed to four of the five major Phanerozoic extinction events (Figure 10).

    References

    Alvarez, L. W., W. Alvarez, F. Asaro, and H. V. Michel, 1980, Extraterrestrial Cause for the Cretaceous-Tertiary Extinction: Science, v. 208, p. 1095.

    Beerling, D. J., M. Harfoot, B. Lomax, and J. A. Pyle, 2007, The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps: Philosophical Transactions of the Royal Society of London, ser. A, Mathematical and Physical Sciences, v. 365, p. 1843 –1866.

    Black, B. A., L. T. Elkins-Tanton, M. C. Rowe, and I. U. Peate, 2012, Magnitude and consequences of volatile release from the Siberian Traps: Earth and Planetary Science Letters, v. 317–318, p. 363-373.

    Black, B. A., E. H. Hauri, L. T. Elkins-Tanton, and S. M. Brown, 2014, Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas: Earth and Planetary Science Letters, v. 394, p. 58-69.

    Bond, D. P. G., I. Savov, P. B. Wignall, M. M. Joachimski, Y. Sun, S. E. Grasby, B. Beauchamp, and D. P. G. Blomeier, 2015, An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification: GSA Bulletin, v. 127, p. 1411-1421.

    Bond, D. P. G., and P. B. Wignall, 2014, Large igneous provinces and mass extinctions: An update, in G. Keller, and A. C. Kerr, eds., Volcanism, Impacts, and Mass Extinctions: Causes and Effects, v. 505, Geological Society of America, p. 0.

    Bowen, N. L., 1940, Progressive Metamorphism of Siliceous Limestone and Dolomite: Journal of Geology, v. 49, p. 225-274.

    Burgess, S. D., S. Bowring, and S.-z. Shen, 2014, High-precision timeline for Earth’s most severe extinction: Proceedings of the National Academy of Sciences, v. 111, p. 3316.

    Burgess, S. D., and S. A. Bowring, 2015, High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction: Science Advances, v. 1, p. e1500470.

    Cao, C.-Q., D.-X. Yuan, H. Zhang, L. Xiang, Y.-C. Zhang, Y. Wang, J. Wang, S.-Z. Shen, L. Mu, Q.-F. Zheng, Y.-S. Wu, X.-D. Wang, J. Ramezani, S. A. Bowring, J. Chen, D. H. Erwin, S. D. Schoepfer, C. M. Henderson, and X.-H. Li, 2018, A sudden end-Permian mass extinction in South China: GSA Bulletin, v. 131, p. 205-223.

    Fahey, D. W., 2007, Twenty questions and answers about the ozone layer, Scientific Assessment of Ozone Depletion: 2006: Geneva, World Meteorological Organization, p. 1-38.

    Ganino, C., and N. T. Arndt, 2009, Climate changes caused by degassing of sediments during the emplacement of large igneous provinces: Geology, v. 37, p. 323-326.

    Gorman, J. A., E. U. Petersen, and E. J. Essene, 1984, Anhydrite equilibria and sulfide zonation in the Fowler massive sulfide body, Balmat, New York: AGU v. 65, p. 293.

    Grasby, S. E., B. Beauchamp, D. P. G. Bond, P. B. Wignall, and H. Sanei, 2016, Mercury anomalies associated with three extinction events (Capitanian Crisis, Latest Permian Extinction and the Smithian/Spathian Extinction) in NW Pangea: Geological Magazine, v. 153, p. 285-297.

    Gulick, S. P. S., P. J. Barton, G. L. Christeson, J. V. Morgan, M. McDonald, K. Mendoza-Cervantes, Z. F. Pearson, A. Surendra, J. Urrutia-Fucugauchi, P. M. Vermeesch, and M. R. Warner, 2008, Importance of pre-impact crustal structure for the asymmetry of the Chicxulub impact crater: Nature Geosci, v. 1, p. 131-135.

    Jablonski, D., G. Chaloner William, H. Lawton John, and M. May Robert, 1994, Extinctions in the fossil record: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, v. 344, p. 11-17.

    Jones, M. T., D. A. Jerram, H. H. Svensen, and C. Grove, 2016, The effects of large igneous provinces on the global carbon and sulphur cycles: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, p. 4-21.

    Korte, C., M. Ruhl, J. Pálfy, C. V. Ullmann, and S. P. Hesselbo, 2019, Chemostratigraphy Across the Triassic–Jurassic Boundary - Chapter 10, in A. N. Sial, C. Gaucher, M. Ramkumar, and V. P. Ferreira, eds., Chemostratigraphy Across Major Chronological BoundariesChemostratigraphy Across Major Chronological Boundaries, Amreican Geophysical Union, Monograph 240, John Wiley and Sons, Inc, p. 185.

    Lowery, C. M., T. J. Bralower, J. D. Owens, F. J. Rodríguez-Tovar, H. Jones, J. Smit, M. T. Whalen, P. Claeys, K. Farley, S. P. S. Gulick, J. V. Morgan, S. Green, E. Chenot, G. L. Christeson, C. S. Cockell, M. J. L. Coolen, L. Ferrière, C. Gebhardt, K. Goto, D. A. Kring, J. Lofi, R. Ocampo-Torres, L. Perez-Cruz, A. E. Pickersgill, M. H. Poelchau, A. S. P. Rae, C. Rasmussen, M. Rebolledo-Vieyra, U. Riller, H. Sato, S. M. Tikoo, N. Tomioka, J. Urrutia-Fucugauchi, J. Vellekoop, A. Wittmann, L. Xiao, K. E. Yamaguchi, and W. Zylberman, 2018, Rapid recovery of life at ground zero of the end-Cretaceous mass extinction: Nature, v. 558, p. 288-291.

    Marzoli, A., S. Callegaro, J. Dal Corso, J. H. F. L. Davies, M. Chiaradia, N. Youbi, H. Bertrand, L. Reisberg, R. Merle, and F. Jourdan, 2018, The Central Atlantic Magmatic Province (CAMP): A Review, in L. H. Tanner, ed., The Late Triassic World: Earth in a Time of Transition: Cham, Springer International Publishing, p. 91-125.

    Newton, R. C., and C. E. Manning, 2005, Solubility of Anhydrite, CaSO4, in NaCl–H2O Solutions at High Pressures and Temperatures: Applications to Fluid–Rock Interaction: Journal of Petrology, v. 46, p. 701-716.

    Pang, K.-N., N. Arndt, H. Svensen, S. Planke, A. Polozov, S. Polteau, Y. Iizuka, and S.-L. Chung, 2013, A petrologic, geochemical and Sr-Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia: Contributions to Mineralogy and Petrology, v. 165, p. 683-704.

    Percival, L. M. E., M. Ruhl, S. P. Hesselbo, H. C. Jenkyns, T. A. Mather, and J. H. Whiteside, 2017, Mercury evidence for pulsed volcanism during the end-Triassic mass extinction: Proceedings of the National Academy of Sciences, v. 114.

    Raup, D. M., and J. J. Sepkoski, 1982, Mass Extinctions in the Marine Fossil Record: Science, v. 215, p. 1501.

    Renne, P. R., A. L. Deino, F. J. Hilgen, K. F. Kuiper, D. F. Mark, W. S. Mitchell, L. E. Morgan, R. Mundil, and J. Smit, 2013, Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary: Science, v. 339, p. 684.

    Robock, A., 2002, The Climatic Aftermath: Science, v. 295, p. 1242.

    Rohde, R. A., and R. A. Muller, 2005, Cycles in fossil diversity: Nature, v. 434, p. 208-210.

    Schoene, B., U. Schaltegger, J. Guex, A. Bartolini, and T. J. Blackburn, 2010, Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level: Geology, v. 38, p. 387-390.

    Schwandner, F. M., 2002, The Organic Chemistry of Volcanic Gases at Vulcano (Aeolian Islands, Italy): Doctoral thesis, Swiss Federal Institute of Technology Zurich (ETH), 144 p.

    Sepkoski, J. A., 2002, Compendium of Fossil Marine Animal Genera, in D. Jablonski, and M. Foote, eds., Bull. Am. Paleontol. no. 363 (Paleontological Research Institution, Ithaca, 2002).

    Sepkoski Jr., J. J., 1996, Patterns of Phanerozoic extinction: a perspective from global data bases, in O. H. Walliser, ed., Global Events and Event Stratigraphy.: Berlin, Springer-Verlag, p. 35-52.

    Sigurdsson, H., 1990, Evidence of volcanic loading of the atmosphere and climate response: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 89, p. 277-289.

    Tanner, L. H., 2018, Climates of the Late Triassic: Perspectives, Proxies and Problems, in L. H. Tanner, ed., The Late Triassic World: Earth in a Time of Transition: Cham, Springer International Publishing, p. 59-90.

    Textor, C., H.-F. Graf, M. Herzog, and J. M. Oberhuber, 2003, Injection of gases into the stratosphere by explosive volcanic eruptions: Journal of Geophysical Research: Atmospheres, v. 108.

    Visscher, H., C. V. Looy, M. E. Collinson, H. Brinkhuis, J. H. A. van Konijnenburg-van Cittert, W. M. Kürschner, and M. A. Sephton, 2004, Environmental mutagenesis during the end-Permian ecological crisis: Proceedings of the National Academy of Sciences of the United States of America, v. 101, p. 12952.

    von Frese, R. R. B., L. V. Potts, S. B. Wells, T. E. Leftwich, H. R. Kim, J. W. Kim, A. V. Golynsky, O. Hernandez, and L. R. Gaya-Piqué, 2009, GRACE gravity evidence for an impact basin in Wilkes Land, Antarctica: Geochemistry, Geophysics, Geosystems (DOI 10.1029/2008GC002149), v. 10.

    Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

    West, R. R., and W. J. Sutton, 1954, Thermography of Gypsum: Journal of the American Ceramic Society, v. 37, p. 221-224.

    Wignall, P. B., 2001, Large igneous provinces and mass extinctions: Earth-Science Reviews, v. 53, p. 1-33.

    Worden, R. H., 2018, Halogen Elements in Sedimentary Systems and Their Evolution During Diagenesis, in D. E. Harlov, and L. Aranovich, eds., The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes: Surface, Crust, and Mantle: Cham, Springer International Publishing, p. 185-260.


     

    Gases in Evaporites Part 3 of 3; Where do gases generate and reside at the scale of a salt mass or salt bed

    John Warren - Saturday, December 31, 2016

    So far we have looked at gas distribution and origins in evaporites at micro and mesoscales and have now developed sufficient understanding to extrapolate to the broader scale of architecture for a large body of salt in an evaporite. We shall do this in a classification framework of extrasalt versus diagenetic periphery versus intrasalt gas in a halokinetic salt mass (Figure 1).


    Extrasalt gas and brine intersections

    This type of gas intersection is perhaps the most damaging to a salt mine operation and tends to occur when a gas release is encountered in an expanding mining operation, or a drill hole, that lies near the salt body edge and intersects nonsalt sediments. Extrasalt fluids can be either normally pressured or overpressured depending on the connectivity of the plumbing in the extrasalt reservoir. Salt because of its excellent seal potential tends not to leak or leak only slowly, so facilitating significant pressure buildup (Warren, in press)

    The gas inflow from this type of extrasalt breach in a salt mine is typically accompanied, or followed by, a brine release that sometimes cannot be plugged, even by a combination of grouting and brine pumping. Brine inflow rates in this scenario tend to increase with time as ongoing salt dissolution is via ongoing undersaturated water crossflows and the mine or the shaft is ultimately lost to uncontrollable flooding of gas blowouts in an oil well with poor pressure control infrastructure and planning. This type of edge intersection is why a number of early attempts to construct shafts for potash mines in western Canada failed in the middle of last century. It is why freeze curtains are considered the best way to contract a shaft for a potash mine. Examples of this type of gas/brine intersection are usually tied to telogenetic fluid entry from substantial aquifer reservoirs outside the main salt mass and are discussed in detail in Warren, (2016, Chapter 13) and as a type of salt anomaly association discussed in Warren (in press).

    The extrasalt source and potential inflow volume of this form of gas (mostly methane and co-associated brine) is largely tied to maturity of hydrocarbon source rocks located external to the salt mass in both suprasalt and subsalt positions (Figure 1). In the past, unexpected extrasalt intersections of pressurised gas reservoirs during oil well drilling lead to spectacular blowouts or “gushers”, especially in situations where the salt held back a significant volume of fluid held in open fractures beneath or adjacent to a salt seal (Table 1). The fluid-focusing effects of suprasalt dome drape and associated extensional falling and gas leakage also mean “gas clouds” are common above salt domes (Warren, 2016, in press). Low σhmin leads to upward gas migration through fracturing (Dusseault et al., 2004). So, in the supradome extrasalt position, simultaneous blowout and lost circulation conditions can be encountered, as well as the problem of severely gas-cut drilling fluids. The volumes of gassy liquids held in pressurised extrasalt reservoirs can be substantial so blowouts or “gushers” can be difficult to control, as was the case with the world-famous subsalt Qom (1956) and suprasalt Macondo (2010) blowouts (Table 1). Methane and gassy liquids generated by organic maturation tend to be the dominant gases found in this situation.

     

    Caprock and other salt periphery-held gases

    This style of gas occurrence is in part related to gases sourced in maturing extra-salt sediments but also taps gases that are the result of the diagenetic processes that create caprocks. Caprocks are alteration and dissolution haloes to both bedded and halokinetic salt masses and so are distinct gas reservoirs compared to extrasalt sediments (Warren, 2016; Chapter 7). They are compilations of fractionated insolubles left behind at the salt dissolution interface as the edge of halite mass liquefies. Accordingly, caprocks are zoned mineralogically according rates of undersaturated fluid crossflow and in part responding to variable rates of salt rise and resupply. Anhydrite (once suspended in the mother salt) accretes at the dissolution front. Ongoing undersaturated crossflow at the outer contact of the anhydrite residue carapace alters anhydrite to calcite via bacterially- or thermochemically-driven sulphate reduction, with hydrogen sulphide as a by-product. Additional sulphate reduction can occur in the extrasalt sediment both at or near the caprock site, but also deeper or more distal positions in the extrasalt, so sulphate reduction can be a major source of the H2S gas found in the salt periphery. H2S can also migrate in a c from sulphate reduction in maturing sediments located some depth below the salt.

    Dissolution that facilitates caprock also drives the creation of vugs and fractures in the caprock, and is one of the primary controls on reservoir poroperm levels in various caprock oil and gas reservoirs discovered in the 1920s in the US Gulf Coast. Methanogenic biodegradation of the same hydrocarbons, which facilitate sulphate reduction, can generate CO2 in the caprock and extrasalt sediments (Clayton et al., 1997)

    Many salt mine problems in Germany in the early days of shaft sinking for salt mining were related to unexpected shallow gas outflows confronted within caprock-hosted gas-filled vugs and fractures encountered by the mine shaft on the way to a potash ore target (Gropp, 1919; Löffler, 1962; Baar, 1977). Likewise, the highly unpredictable distribution of gases in the shallow caprocks and salt peripheries of the US Gulf Coast were the cause of some spectacular blowouts such as Spindletop (1901) (Table 1). Because the volume of held liquids is more limited in the vugs and fractures in a caprock compared to fractured subsalt reservoirs, the rate of fluid escape in a “caprock-fed” gusher tends to lessen and even self-bridge more rapidly than when salt is sealing a fractured overpressured subsalt reservoir (days or weeks versus months). As such these intersections, if isolated from extrasalt reservoirs as not such a problem in the drilling of oil wells. In simpler, less environmentally conscious, early days of oilwell drilling in East Texas in the 1920s, “gushers” were often celebrated, tourist spots and considered a sign of the potential wealth coming to the country being drilled.

    Intrasalt gas

    This type of accumulation/intersection is often described as an intrasalt gas pocket and is typified by a high rate of gas release, that in a mine is accompanied by a rockburst, followed by a waning flow that soon reaches negligible levels as the pocket drains (see article 1 in this series). Intrasalt gas pockets can create dangerous conditions underground and lives can be lost, but in many cases after the initial blowout and subsequent stabilisation, the mine operations or oil-well drilling can continue. Gas constituents and relative proportions are more variable in intrasalt gas pockets compared to gases held in the extrasalt and the periphery. Extra-salt gases are typically dominated by methane with lesser H2S and CO2, periphery gases by H2S and methane, while intrasalt gases can be dominated by varying proportions of nitrogen, hydrogen or CO2. Methane can be a significant component in some intrasalt gas pockets, but these occurrences are usually located in salt anomalies or fractures that are in current or former connection with the salt periphery.

    Gas types and sources at the local and basin scale

    The type of gas held within and about a salt mass in a sedimentary basin is broadly related to position in the mass and proximity to a mature source rock. Herein is the problem, most of the gases that occur in various salt-mass related positions (intrasalt, extrasalt and periphery) can have multiple origins and hence multiple sources.

    Accumulations of gas with more than 95 vol.% N2 are found in most ancient salt basins and the great majority of these accumulations are hosted in intersalt and subsalt beds, with the gas occurring in both dispersed and free gas forms in the salt, as in many Zechstein potash mines of Germany and the Krasnoslobodsky Mine in the Soligorsk mining region of Russia (Tikhomirov, 2014). Nitrogen gas today constitutes around 80% of earth atmosphere where it can result from the decay of N-bearing organic matter (proteins). Ultimately, nitrogen speciates from aqueous mantle fluids in oxidised mantle wedge conditions in zones of subduction and in terms of dominance in planetary atmospheres it indicates active plate tectonics (Mikhail and Sverjensky, 2014). Nitrogen in the subsurface is large unreactive compared to oxygen and so tens to stay in its gaseous form while oxygen tens to combine into a variety of minerals. When held in a salt bed, nitrogen can be captured from the atmosphere during primary halite precipitation and stored in solution in a brine inclusion so creating a dispersed form of pressurised nitrogen. When buried salt recrystallizes during halokinesis, with flow driven by via pressure solution, inclusion contents can migrate to intercrystalline positions and from there into fractures to become free gas in the salt.

    Methane gas captured in and around a salt mass as both dispersed and be gas typically mostly comes from organic maturation. The maturing organic matter can be dispersed in the salt during primary halite precipitation, it can be held in intersalt source beds (as in the Ara Salt of Oman), or it can migrate laterally to the salt edge, along with gases and fluids rising from more deeply buried sources. Thus, the presence of oil, solid bitumen and brine inclusions, with high contents of methane in halite, does not unequivocally point to the presence of oil or gas in the underlying strata, it can be locally sourced from intersalt beds as in the Ara Salt. However, a geochemical aureole can be said to occur if hydrocarbons in the halite-hosted inclusions can genetically be linked with reservoired oil or gas. The presence of methane in salt anomalies in Louann Salt mines in the US Gulf Coast and some mines in Germany is likely related to organic maturation of deeply buried extrasalt source rocks with subsequent entrapment during halokinesis and enclosure of allochthon-suture sediments.

    Hydrogen sulphide gas (H2S) is a commonplace free gas component in regions of bacterial and thermogenic sulphate reduction. Like methane, much of its genesis is tied to organic maturation products (and sulphate reduction processes), and like methane, it can be held in salt seal traps, or in peripheral salt regions, or in intrasalt and intersalt positions and like metyhane if it escapes and ponds in an air space its release can be deadly (Table 1; Luojiazhai gas field, China). Because both bacterial and thermochemical sulphate reduction requires organic material or methane, there is a common co-occurrence of the two gases. Caprock calcite phases are largely a by-product of bacterial sulphate reduction, so there is an additional association of H2S with caprock-held occurrences. This form of H2S, along with CO2, created many problems in the early days of shaft sinking in German salt mines. More deeply sourced H2S tend to be a production of thermochemical sulphate reduction in regions where pore fluid temperatures are more than 110°C.

    Detailed study of CO2 and its associated geochemical/mineralogic haloes shows much of the CO2 held in Zechstein strata of Germany has two main sources; 1) Organic maturation and 2) carbonate rock breakdown especially in magmatic hydrothermal settings (Fischer et al., 2006). The organic-derived CO2 endmember source (with δ13C near -20‰) is present in relatively low concentrations, whereas large CO2 concentrations are derived from an endmember source with an isotope value near 0‰. Although the latter source is not unequivocally defined by its isotopic signature, such “heavy” CO2 sources are most likely attributed to heating-related carbonate decomposition processes. This, for example, explains the CO2-enriched nature of salt mines in parts if the former East Germany where Eocene intrusives are commonplace (Shofield et al., 2014).

    Hydrogen (H2) gas distribution as a major component varies across salt basins and is especially obvious in basins with significant levels of carnallite and other hydrated potassic salts. This association leads to elevated radiogenic contents tied to potassic salt units, with hydrogen gas likely derived from the radiogenic decomposition of water (see article 2 in this series). The water molecules can reside in hydrated salts or in brine inclusions in salt crystals.

    Summary

    Various proportions of gases (N2, CH4, CO2, H2S, H2) held in salt as dispersed and free gas occur in all salt basins. But at the broad scale, certain gases are more common in particular basin and tectonic positions. Methane is typically enriched in parts of a basin with mature source rocks, but can also have a biogenic source. Likewise, H2S is tied to zones of organic breakdown, especially in zones of either bacterial or thermochemical sulphate reduction. CO2 can occur in salt in regions of organic degradation, but is most typical those of parts of a salt basin where igneous processes have driven to thermal and metamorphic decomposition of underlying carbonates (including marbles). Nitrogen because of its inert nature is a commonplace intrasalt gas and comes typically from zones of organic decomposition with dispersed nitrogen becoming free gas with subsequent halokinetic recrystallisation. Ongoing salt flow can drive the distribution of all dispersed salt stored gases into free gas (gas pocket) positions.

    References

    Baar, C. A., 1977, Applied salt-rock mechanics; 1, The in-situ behavior of salt rocks: Developments in geotechnical engineering. 16a.

    Clayton, C. J., S. J. Hay, S. A. Baylis, and B. Dipper, 1997, Alteration of natural gas during leakage from a North Sea salt diapir field: Marine Geology, v. 137, p. 69-80.

    Dusseault, M. B., V. Maury, F. Sanfilippo, and F. J. Santarelli, 2004, Drilling around salt: Stresses, Risks, Uncertainties: Gulf Rocks 2004, In 6th North America Rock Mechanics Syposium (NARMS), Houston Texas, 5-9 June 2004, ARMA/NARMS 04-647.

    Fischer, M., R. Botz, M. Schmidt, K. Rockenbauch, D. Garbe-Schönberg, J. Glodny, P. Gerling, and R. Littke, 2006, Origins of CO2 in Permian carbonate reservoir rocks (Zechstein, Ca2) of the NW-German Basin (Lower Saxony): Chemical Geology, v. 227, p. 184-213.

    Gropp, 1919, Gas deposits in potash mines in the years 1907-1917 (in German): Kali and Steinsalz, v. 13, p. 33-42, 70-76.

    Löffler, J., 1962, Die Kali- und Steinsalzlagerstätten des Zechsteins in der Dueutschen Deomokratischen Republik, Sachsen: Anhalt. Freiberg. Forschungsh C, v. 97, p. 347p.

    Mikhail, S., and D. A. Sverjensky, 2014, Nitrogen speciation in upper mantle fluids and the origin of Earth's nitrogen-rich atmosphere: Nature Geoscience, v. 7, p. 816-819.

    Schofield, N., I. Alsop, J. Warren, J. R. Underhill, R. Lehné, W. Beer, and V. Lukas, 2014, Mobilizing salt: Magma-salt interactions: Geology, v. 42, p. 599-602.

    Tikhomirov, V. V., 2014, Molecular nitrogen in salts and subsalt fluids in the Volga-Ural Basin: Geochemistry International, v. 52, p. 628-642.

    Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3) Released Feb. 2016: Berlin, Springer, 1854 p.

    Warren, J. K., in press, Salt usually seals, but sometimes leaks: Implications for mine and cavern stability in the short and long term: Earth-Science Reviews.

     

     

    Gases in Evaporites, Part 2 of 3: Nature, distribution and sources

    John Warren - Wednesday, November 30, 2016

    This, the second of three articles on gases held within salt deposits, focuses on the types of gases found in salt and their origins. The first article (Salty Matters October 31, 2016) dealt with the impacts of intersecting gassy salt pockets during mining or drilling operations. The third will discuss the distribution of the various gases with respect to broad patterns of salt mass shape and structure (bedded, halokinetic and fractured)

    What’s the gas?

    Gases held in evaporites are typically mixtures of varying proportions of nitrogen, methane, carbon dioxide, hydrogen, hydrogen sulphide, as well as brines and minor amounts of other gases such as argon and various short chain hydrocarbons (Table 2). There is no single dominant gas stored in salt across all evaporite deposits, although a particular gas type may dominate or be more common in a particular region. For example, CO2 is commonplace in the Zechstein salts of the Wessen region of Germany (Knipping, 1989), methane is common in a number of salt dome mines in central Germany and the Five-Islands region in Louisiana, USA (Kupfer, 1990), nitrogen is dominant in other salt mines in Germany and New Mexico, while hydrogen can occur in elevated proportions in the Verkhnekamskoe salt deposits of the Ural foredeep (Savchenko, 1958).

    Before considering the distribution of the various gases, we should note that older and younger sets of gas analyses conducted over the years in various salt deposits are not necessarily directly comparable. Raman micro-spectroscopy is a modern, non-destructive method for investigating the unique content of a single inclusion in a salt crystal. There is a significant difference in terms of what is measured in analysing gas content seeping from a fissure in a salt mass or if comparisons are made with conventional wet-chemical methods which were the pre Raman-microscopy method that is sometimes still used. Wet chemical methods require sample destruction, via crushing and subsequent dissolution, prior to analysis. This can lead to the escape of a variable proportion of the volatile compounds during the crush stage, such as methane, hydrogen, ethane and aromatic hydrocarbons, especially of those components held in fissures and more open intercrystalline positions. Any wet chemical technique gives values that represent the average of all the inclusion residues and intercrystalline gases left in the studied sample, post preparation. In contrast, Raman Microspectroscopy indicates content and proportion within a single inclusion in a salt crystal. So, free gas results and wet chemical compositions, when compared to Raman microscopy determinations from inclusions, are not necessarily directly comparable. With this limitation in mind, let us now look at major gas phases occluded in salt.


    Nitrogen

    Gassy accumulations in salt with elevated levels of N2 occur in many salt basins in regions not influenced by magmatic intrusions (Table 1). In an interesting study of spectroscopic gases held in inclusions in the Zechstein salt of Germany, Siemann and Elendorff (2001) document a bipartite distribution of inclusion gases. With rare exceptions, the first group, made up of N2 and N2-O2 inclusions reveals N2/O2 ratios close to that of modern atmosphere, which they interpret as indicating trapped paleoatmosphere (Figure 1). Similar conclusions are reached in earlier studies of nitrogen gas held in Zechstein salts, using wet chemical techniques (Freyer and Wagener, 1975). The second group documented by Sieman and Elendoorff (2001) is represented by inclusions that contain mixtures of N2, CH4 occasionally H2 or H2S. The most abundant subgroups in this second group are N2-CH4 and N2-CH4-H2 mixtures, that is, the methane association (Figure 1). Siemann and Elendorff (2001) argue that these methanogenic and hydrogenic gas mixtures of the second group are the product of decomposition of organic material under anoxic subsurface conditions. They note that the methane and hydrogenic compounds, as well as some portion of the nitrogen, are not necessarily derived from decomposing organics held within the salt. They could have been generated by degassing of underlying Early Permian (Rotliegendes) or Carboniferous organic-rich sedimentary rocks with subsequent entrapment during early stages of fluid migration, possibly driven by Zechstein halokinesis.


    Different origins and timings of both main nitrogen gas groupings in inclusions in the salt host is supported by stratigraphic correlations (Siemann and Elendorff, 2001). In the stratigraphic layers which contain mainly mixtures of N2 and O2 or pure N2, inclusions of the N2-CH4-H2-H2S-group are rare (A in Figure 1) and vice versa: layers which are rich in N2-CH4-H2-H2S do not contain many pure N2-O2inclusions (B in Figure 1). The majority of layers investigated in the salt mostly contain inclusions of the N2-O2 group, sans methane. Only two anhydrite-rich layers of Zechstein 3 (Main Anhydrite and Anhydrite-intercalated Salt) contain mainly inclusions of the second group (i.e. with abundant methane) as seen in B in Figure 1. The Zechstein 3 potash seams, as well as secondary halites, contain more or less the same population of inclusions from every main group (C in Figure 1). A comparison of the gas-rich inclusions and the gases in the brine-rich inclusions of the Zechstein 2 layer, Main Rock Salt 3, also shows distinct differences. Whereas, the gas-rich inclusions are mostly of the N2-O2 grouping, the gases from the brine-rich inclusions are mostly of the N2-CH4 group, emphasizing different origins for the gas-rich and brine-rich inclusions Siemann and Elendorff (2001) conclude that the latter gas group is a product of thermally evolved anhydrite-rich parts or potash seams that have generated hydrocarbons catagenically, with these products migrating into the overlying and deforming Main Rock Salt 3.

          

    Work on the free gas released during mining of the Permian Starobinsky potash salt deposit in the Krasnoslobodsky Mine, Soligorsk mining region, Russia shows that the dominant free gas is nitrogen, along with a range of hydrocarbons, including methane (Figure 2; Andreyko et al., 2013). The compositional plot is based on free gases released from the main pay horizon of the Krasnoslobodsky Mine, which it the Potash Salt Horizon 3. The exploited stratigraphy is 16 to 18 m thick in the centre of the minefield and thins to 1 m thick at the edges of the ore deposit. Depth to the potash horizon varies from 477 to 848 m below the landsurface. It consists of three units: 1) top sylvinite unit, which is classified as non-commercial due to high insoluble residue content; 2) mid clay–carnallite unit, which is composed of alternating rock salt, clay and carnallite; and 3) bottom sylvinite unit, which is the main ore target and is composed of six sylvinite layers (I-VI), alternating with rock salt bands (Figure 3). The distribution of gas across the stratigraphy of units I-VI shows that the free gas yields are consistently higher in the sylvinite bands (Figure 3).

          

    Oxygen levels in salt are not studied in as much detail as the other gas phases due to their more benign nature when released in the subsurface. Work by Freyer and Wagener (1975) focusing on the relative proportions of oxygen to nitrogen held in Zechstein salts was consistent with the inclusions retaining the same relative proportions of the two gases as were present in the Permian atmosphere when the salts first precipitated.

    As well as being held within the salt mass, substantial nitrogen accumulations can be hosted in inter-salt and sub-salt lithologies. For example, the resources of nitrogen in the Nesson anticline in the Williston Basin are ≈53 billion m3 and held in sandstones intercalated with anhydrite in the Permian Minnelusa Fm (Marchant, 1966; Anderson and Eastwood, 1968) and those in Udmurtia in the Volga–Ural Basin are ≈33 billion m3 (Tikhomirov, 2014). In both these non-salt enclosed cases the evolution of the nitrogen gas is related to the catagenic and diagenetic evolution of organic matter. Tikhomirov (2014) concludes that nitrogen in the various subsalt fluids in the Volga–Ural Basin originates from two major sources. Most of the nitrogen in the subsalt has δ15N > 0‰ and is genetically related to concentrated calcium chloride brines, heavy oils, and bitumen in the platform portion of the basin and so ties to a catagenic origin. The other N2 source is seen in subordinate amounts of nitrogen across the basin with δ15N values < 0‰. According to Tikhomirov (2014), this second group seems to be genetically related to methane derived at significant depths in the basement lithologies of Ural Foredeep and Caspian depression (possibly a form of mantle gas?).

    Methane

    Unexpected intersections with gas pockets containing significant proportions of methane can be dangerous, as evidence by the Belle Isle Salt Mine disaster in 1979 as well as others (see article 1). Many methane (earth-damp) intersections and rockbursts in US Gulf Coast salt mines can be tied to proximity to a shaley salt anomaly (Molinda 1988; Kupfer 1990).

    Methane contents of normal salt (non-anomaly salt) in salt domes of the Five-Islands region of the US Gulf Coast were typically low (Kupfer, 1990). For example, the majority of the samples of normal salt, as tested by Schatzel and Hyman, (1984), contained less than 0.01 cm3 methane per 100 g NaCI. Although there can be wide ranges of methane enrichment in normal versus outburst salts, outburst salts are typified by increases in halite crystal size, the number of included methane gas bubbles, contorted cleavage surfaces related to increased overpressured gas contents, and an increase in clay impurities in some of the more methane-rich salt samples.

     

    Probably the most detailed study of controls on methane distribution in domal salt was conducted at the Cote Blanche salt mine in southern Louisiana (Molinda, 1988). Because outbursts were the primary mode of methane emission into the mine, he mapped more than 80 outbursts, ranging in size from 1 to 50 ft in diameter. The outbursts were aligned and elongate parallel to the direction of salt layering and such zones correlate well with high methane content (Figure 4). Halite crystal size abruptly increased upon entry into gassy zones subject to rockburst. The intensity of folding and kinking of the salt layering within the outburst zone also increased. The interlayered sand, shown in Figure 4, also occurred throughout the mine and not just in the mapped area shown, but was not a significant source of methane. Molinda (1988) and Schatzel and Hyman (188) all concluded that not all rockbursts were hosted by coarsely crystalline fine-grained salt, so the absence of coarsely crystalline salt may not be an indication that a rockburst cannot occur, although it is less likely. Sampling the salt for methane levels may be a better approach for rockburst prediction.

    In some methane occurrences in Europe (in addition to generation from clayey intrasalt organic entraining bands) there is a further association with igneous-driven volatilization from nearby, typically underlying, coaly deposits. This igneous association with coals and carbonates likely creates an additional association with CO2 and possibly H2S.

    CO2

    Many CO2 rich gas intersections tie to regions that have been heated or cross-cut with igneous intrusives. For example, many of the CO2-bearing gas mixtures that were encountered in the Werra region during the initial exploratory drillings for potash salts(Table 1 in article 1; Frantzen, 1894). In 1901, shortly after mining at Hämbach had begun, coincident intersections of basalt dykes and releases of gas were observed (Gropp, 1919). Dietz (1928a,b) noted that a fluid phase was always involved in the fixation of the CO2gas mixtures in the Zechstein evaporites, while Bessert (1933) reported on the enrichment of anhydrite, kainite, and polyhalite at the contact with the basaltic intrusive. Accumulations of CO2-rich free gas in many Wessen mines became a safety issue and many subsequent studies underlined the association of CO2 enriched gases with basalt occurrences (Knipping, 1989). In almost all instances in the Zechstein where native sulphur forms the at the contact of a basaltic dyke, knistersalz dominates the evaporite portion of the samples. According to Ackermann et al. (1964) gas-bearing drill core samples collected in the Zechstein K1Th unit (carnallitite, sylvinite) in the Marx-Engels mine (formerly Menzengraben, East Germany) contained up to 0.6 - 14.0 ml gas/100 gm rock, with an average of 3.6 ml of gas fixed in 100 g of salt rock (Table 1)of. On average, the gas inclusions were composed of 84 vol% CO2. Knipping (1989) concludes that quantities of volatile phases (mainly H20 and CO2) penetrated the evaporites during intrusion of basaltic melts. These gases influenced mineral reactions, particularly when intersecting with reactive K-Mg rock layers of the Hessen (K1H) and Thuringen (K1Th) potash seams in the former East Germany. The intensity of this reaction was likely greater when the evaporite layers contain hydrated salts such as carnallite and kainite. Such salts tend to release large volumes of water at relatively low temperatures when heat by a nearby intrusive (Warren, 2016; Chapter 16; Schofield et al., 2014). In doing so, significant volumes of CO2 enriched gases were trapped in the altered and recrystallising evaporites, so forming knistersalz.


    While discussing CO2 elevated levels, it is probably taking a little time to illustrate what makes this area of CO2 occurrence so interesting in terms of the differential levels of reactivity when hydrated versus non-hydrated salt units are intruded and how this process facilitates penetration of volcanic volatiles (including CO2) into such zones. The Herfa-Neurode potash mine is located in the Werra-Fulda Basin in the Hessian district of central Germany (Figure 5a). The targeted ore levels consist of the carnallite-rich Kaliflöz Hessen (K1H) and Kaliflöz Thüringen (K1Th) intervals, which form part of the Zechstein 1 (Z1) bedded Werra salt succession(Warren, 2016). In the mine the K1H and K1Th units range in thickness from 2 m to 10 m, are generally subhorizontal and occur at a depth of 650–710 m below the present-day surface. In the later Tertiary, basaltic melts intruded these Zechstein evaporites as numerous sub-vertical dykes, but only a few dykes attained the Miocene landsurface. Basaltic melt production was related to regional volcanic activity some 10 to 25 Ma. Basalts exposed in the mine walls, where it cuts non-hydrous units of halite or anhydrite, are typically subvertical dykes, rather than subhorizontal sills. The basalts are phonolitic tephrites, limburgites, basanites and olivine nephelinites. Dyke margins are usually vitrified, forming a microlitic limburgite glass along dyke edges in contact with salt (Figure 5b; Knipping, 1989). At the contact on the evaporite side of the glassy rim there is a cm-wide carapace of high-temperature salts (mostly anhydrite and ferroan carbonates). Further out, the effect of the high-temperature envelope is denoted by transitions to clear halite, with higher temperature fluid inclusions (Knipping 1989). All of this metre-scale alteration is an anhydrous alteration halo, the salt did not melt (melting temperature of 804°C), rather than migrating, the fluid driving recrystallisation was largely from entrained brine/gas inclusions. The dolerite/basalt interior of the basaltic dyke is likewise altered and salt soaked, with clear, largely inclusion-free halite typically filling vesicles in the basalt.

    Heating of hydrated salt layers, adjacent to a dyke or sill, tends to drive off the water of crystallisation (chemical or hydration thixotropy) at much lower temperatures than that at which anhydrous salts, such as halite or anhydrite, thermally melt (Figure 5c; Schofield et al., 2014). For example, in the Fulda region, the thermally-driven release of water of crystallisation within particular salt beds creates thixotropic or subsurface “peperite” textures in carnallitite ore layers. These are layers where heated water of crystallisation escaped from the hydrated-salt lattice. Dehydration-driven loss of mechanical strength focuses zones of magma entry into particular subhorizontal horizons in the salt mass, wherever hydrated salt layers were present. In contrast, dyke and sill margins are much sharper and narrower in zones of contact with anhydrous salt intervals and the intrusive is sub-vertical to steeply dipping (Figure 5b versus 5c).

    Accordingly, away from the immediate vicinity of the direct thermal aureole, heated and overpressured dehydration waters can enter a former carnallite halite bed, and drive the creation of extensive soft sediment deformation and peperite textures in the former hydrated layer (Figure 5c). Mineralogically, sylvite and coarse recrystallised halite dominate the salt fraction in the peperite intervals of the Herfa-Neurode mine. Sylvite in these altered zone is a form of dehydrated carnallite, not a primary-textured salt. Across the Fulda region, such altered zones and deformed units can extend along former carnallite layer to tens or even a hundred or more metres from the dyke feeder. Ultimately, the deformed potash bed passes back out into the unaltered bed, which retains abundant inclusion-rich halite and carnallite (Schofield et al., 2014). That is, nearer the basalt dyke, the carnallite is largely transformed into inclusion-poor halite and sylvite, the result of incongruent flushing of warm saline fluids mobilised from the hydrated carnallite crystal lattice as it was heated by dyke emplacement. During Miocene salt alteration/thermal metamorphism in the Fulda region, NaCl-fluids were mixed with fluids and gases originating from thermally-mobilised crystallisation water in the carnallite, as it converted to sylvite. This brine/gas mixture altered the basalts during post-intrusive cooling, an event which numerical models suggest was quite rapid (Knipping, 1989): a dyke of less than 0.5 m thickness probably cooled to temperatures less than 200°C within 14 days of dyke emplacement. The contrast in alteration extent between anhydrous and hydrous salt layers shows alteration effects are minimal wherever the emplacement temperature of the magma is below that of the anhydrous salt body as it is next to a basalt dyke. If this is the mechanism driving entry of igneous-related volatiles (gases and liquids) into a salt body then the distribution of products (including CO2) will be highly inhomogeneous and related to the minerally of the salt unit adjacent to the intrusive.


    Hydrogen

    Many hydrogen occurrences are co-associated with occurrences of potash minerals, especially the minerals carnallite and sylvite. For example, mine gases (free gas) at Leopoldshall Salt Mine (Zechstein, Permian of Stassfurt, Germany) flowed for at least 4.5 years, producing hydrogen at a rate of 128 cubic feet per day (Rogers 1921). Bohdanowicz (1934) lists hydrogen gas as being present in evaporite intersection in the Chusovskie Gorodki well, drilled in 1928 near the city of Perm to help define the southern extent of the Soligamsk potash. Gases in the carnallitite interval in that well contained 33.6% methane and 17.4% hydrogen. More recent work in the same region clearly shows hydrogen is a commonplace gas in the mined Irenskii unit in the Verkhnekamskoe potash deposit within the central part of the Solikamsk depression in the Ural foredeep. Based on a study of free gas and inclusion-held gas in the Bereznikovshii Mine, Smetannikov (2011) found that the elevated H2 levels are consistently correlated with the carnallite and carnallite-bearing layers (Table 2). Other gases present in significant amounts, along with the hydrogen, in the potash zones include nitrogen and methane. Interestingly, methane is present in much higher proportions in the free gas fraction in the ore zones compared to gases held in inclusions in the potash crystals (Table 2).  

    Smetannikov (2011) goes on to suggest that likely H2 source is via radiogenic evolution of released crystallisation water hence the higher volumes of hydrogen in the carnallitite units in the mine (Table 2). He argues the most probable mechanism generating H2 is the radiolysis of the crystallisation water of carnallite (CaMgCl3.6H2O) driven by the effects of radioactive radiation. The most likely radiogenic candidates are 40K and 87Rb, rather than such heavy radiogenic isotopes as 238U, 235U, 234U, 232Th, and 226Ra. His reasons for this are as follows: 1) U, Th, and partly Ra are sources of α radiation. U, Th, and Ra are concentrated in the insoluble residues of the salts, and the chloride masses contain only minor amounts of Th. Hence these components have no radioactive effect on carnallite because of the short distances of travel of α particles. Because of this, Smetannikov concludes these elements and not likely sources of radioactive radiation. He argues it is more likely that crystallisation water is more intensely affected by β and γ radiation generated by 40K and 87Rb. Hence, bombardment by β and γ radiation drives the radiolysis (splitting) of this water of crystallisation, so driving the release of hydrogen and hydroxyls. Free hydroxyls can then interact with Fe oxides to form hydro-goethite and lepidocrocite, i.e., both these minerals occur in the carnallite but are absent in the sylvinite.

    The notion of hydrogen being created by radiolysis of potash salt layers is not new; it was used as the explanation of the hydrogen association with various potash units by Nesmelova & Travnikova (1973), Vovk (1978) and Knape (1989). Headlee (1962) attributed the occurrence of hydrogen in salt mines to the absence of substances with which hydrogen could react within the salt beds once it was generated. It is likely that there are several different origins for hydrogen gas in evaporites: 1) Production during early biodegradation of organic matter, co-deposited with the halite or potash salts and trapped in inclusions as the crystal grew. This can explain some of the associated nitrogen and oxygen; 2) A significant proportion can be produced by radiolysis associated with potassium salts (when present) and 3) the hydrogen may be exogenic and have migrated into the halite formations, along with nitrogen. 

    Temperature and mineralogical effects on gas generation and distribution in salt (in part after Winterle et al., 2012)

    Temperature can affect brine chemistry of volatiles released as natural rock salt is heated (is this an analogue to the generation of some types of free gas and other volatile released as salt enters the metamorphic realm? –see Warren 2013; Chapter 14). Uerpmann and Jockwer (1982) and Jockwer (1984) showed that, upon heating to 350°C [662°F], the gases H2S, HCl, CO2, and SO2 were released from blocks of natural salt collected from the Asse mine in Germany. Pederson (1984) reported the evolution of HCl, SO2, CO2, and H2S upon heating of Palo Duro and Paradox Basin rock salt to 250°C [482°F]. Impurities within the salt apparently contain one or more thermally unstable, acidic components. These components can volatilize during heating and increase the alkalinity of residual brines. For example, pH of brines increased from near neutral to approximately 10 in solutions prepared by dissolving Permian Basin salt samples that were annealed at progressively higher temperature [up to 167°C [333°F]  (Panno and Soo, 1983).

    Zones of igneous emplacement and intrusion of interlayered halite and potash units create a natural laboratory for the study of the generation and migration of free and inclusion gases during the heating of various salts (Figures 5, 6 and Table 1). In the Cambrian succession of the Siberian platform evaporite intervals are dominated by thick alternating carbonate- sulphate and halite beds. Numerous basaltic dykes and sills intrude these beds. In a benchmark paper dealing with the zone of alteration of intrusives in evaporites, Grishina et al. 1992 found that, in potash-free halite zones intersected by basaltic intrusions, the evolution of the inclusion fluid chemistry is described as a function of the thickness of the intrusion (h) and the distance of the sample from the contact with the intrusion (d) and expressed as a response to the measure d/h. The associated gas in the halite is dominated by CO2 (Table 1). Primary chevron structures with aqueous inclusions progressively disappear as d/h decreases; at d/h < 5 a low-density CO2 vapour phase appears in the brine inclusions; at d/h < 2, a H2S-bearing liquid-CO2 inclusions occur, sometimes associated with carbonaceous material and orthorhombic sulphur, and for d/h < 0.9, CaCl2, CaCl2.KCl and n CaCl2.n MgCl2 solids occur in association with free water and liquid CO2 inclusions, with H2S, SCO, and Sg. The d/h values marking the transitions outlined above occur both above and below sills, but ratios are lower below the sills than above, indicating mainly conductive heating below and upward vertical fluid circulation above the sill. The water content of the inclusions progressively decreases on approaching the sills, whereas their CO2 content and density increase.


    Carnallite, sylvite and calcium chloride salts occur as solid inclusions in the two associations nearest to the sill for d/h<2. Carnallite and sylvite occur as daughter minerals in brine inclusions. The presence of carbon dioxide is interpreted to indicate fluid circulation and dissolution/recrystallization phenomena induced by the basalt intrusions. The origin of carbon dioxide is related to carbonate dissolution during magmatism. Similar conclusions as to the origin of the CO2 in heated halite-dominant units were reached by many authors studying gases in the Zechstein salts in the Werra Fulda region of Germany (Figure 6; Table 1; see Knipping et al., 1989, Hermann and Knipping 1993 for a summary).

    When the gas distributions measured in inclusions in potash units, other than the Cambrian salts of Siberia, are compared to those salts that have not experienced the effects of igneous heating, there is a clear separation in terms of the dominant inclusions gases (Table 1; Grishina et al., 1998). For example, inclusions in the Verhnekamsk deposit (Russian platform) are N2-rich, in regions not influenced by magmatic intrusives (Figure 2, 3). It is an area marked by the presence of ammonium in sylvite (0.01-0.15% in sylvinite and 0.5% in carnallite, Apollonov, 1976). Likewise, nitrogen (via crush release of the samples) is the dominant gas according to the bulk analyses of the same salts by Fiveg (1973). 

    Later Raman studies of individual inclusions in these Cambrian salts reveals a more complicated inclusion story. There are three types of inclusion fill; a) gas, b) oil and c) brine + carnallite-bearing inclusions. Fe-oxides are sometimes associated with inclusions containing the carnallite daughter minerals. Detailed work by Grishina et al. (1998) shows there two kinds of gassy inclusion: 3) N2-rich and 2) CH4-rich 3) CO2-rich in the same age salt (Table 1; Figure 6). That is, not all gassy brine inclusion in the Cambrian salts are nitrogenous. N2 gas inclusions that also contain CO2 and are associated with sylvite with a low ammonium content (0.04 mol% NH4C1). In contrast, CH4 inclusions are associated with ammonium-rich sylvite (0.4 mol% NH4Cl) (Table 2). Older bulk analysis studies(Apollonov, 1976) showed that red sylvinite  has a lower molar NH4Cl content (0.01%) than pink and white sylvinites (0.05 to 0.19%)

    Raman studies of inclusions in the potash-entraining Eocene basin of Navarra, (Spain) outside of any region with magmatic influence show that the gaseous inclusions are mostly N2-rich with 10% to 20% methane (Table 1; Figure 6; Grishina et al., 1998). Traces of CO2 are also detected in some of the Spanish inclusions. Sylvite inclusions in CO2-free inclusions in Spain contain up to 0.3 mol% NH4C1 (Table 2). Grishina et al. (1998) notes that salt formations in the Bresse basin (France) and Ogooue delta (Gabon) have no basalt intrusions and both occur in N2-free, oil-rich environments. The inference is that nitrogen in some salt units is not an atmospheric residual.


    To test if there may be a mineralogical association with a gas composition in inclusions in various salt and evaporitic carbonate layers we shall return to the Zechstein of Germany and the excellent detailed analytical work of Knipping (1989) and Hermann and Knipping (1993). This work is perhaps the most detailed listing in the public realm of gas compositions inclusions sampled down to the scale of salt layers and their mineralogies. Figure 7 is a plot I made based on the analyses listed in Table 9 in Hermann and Knipping (1993).  It clearly shows that for  Zechstein salts collected across the mining districts of central Germany this is an obvious tie of salt mineralogy to the dominant gas composition in the inclusions. In this context, it should be noted that all Zechstein salt mines are located in halokinetic structures with mining activities focused into areas where the targeted potash intervals are relatively flat-lying. There is little preservation of primary chevrons in these sediments. Nitrogen is the dominant, often sole gas in the halite-dominant units, CO2 is dominant in carbonate and anhydrite dominant layers, this is especially obvious in units originally deposited near the base of the Zechstein succession. Hydrogen in small amounts has an association with inclusions the same carbonates and anhydrites, but elevated hydrogen levels are much more typical of potash units, clays and in juxtaposed layers.  

    In my opinion, the gas compositions in inclusions that we see today in any salt mass that has flowed at some time during its diagenetic history will likely have emigrated and been modified to varying degrees within the salt mass. This is true for all the gases in salt, independent of whether the gas is now held in isolated pockets, fractures or fluid inclusions, Non of the gas in halokinetic salt is not in the primary position. Movement and modification of various gas accumulations in halokinetic salt is inherent to the nature of salt flow processes. Salt and its textures in any salt structure have migrated and been mixed and modified, at least at the scale of millimetres to centimetres, driven by vagaries of recrystallisation as a flowing salt mass flows (Urai et al., 2008). All constituent crystal sizes and hence gas distributions across various inclusions in the salts are modified via flow-induced pressure fields, driving pressure solution and reannealing (See Warren 2016 Chapter 6 for detail).

    With this in mind we can conclude that for the Zechstein of central Germany, nitrogen was likely the earliest gas phase as it occurs in all units. On the other hand, CO2, with its prevalence in units near the base of the succession or in potash units that  have once contained hydrated salts at the time of igneous intrusion, entered along permeability pathways. This may also be true of carbonates and anhydrites which would have responded in more brittle fashion. Hydrogen is clearly associated with potash occurrence or clays and an origin via radiolysis is reasonable.


    This leaves methane, which as we saw earlier is variable present in the Zechstein, but not studied in detail by Knipping (1989) or Hermann and Knipping (1993). There is another excellent paper by Potter et al. (2004) that focuses on the nature of methane in the Zechstein 2 in a core taken in the Zielitz mine, Northeastern Germany Bromine values show a salting-upward profile with values exceeding 200 ppm in the region of potash bitterns (Figure 8a). This is a typical depositional association, preserved even though textures show a degree of recrystallisation and implying there have not been massive fluid transfers since the time the salt was first deposited. Methane is present in sufficient volumes to be sampled in the lower 10 metres of the halite (Z2NAa) and in the upper halite (Z2Nac) and the overlying potash (Z2Kst). If was variably present in the intervening middle halite. When carbon and deuterium isotope values from the methane in the lower and upper parts of the stratigraphy are cross plotted. Values from the lower few meters of the halite plot in the thermogenic range and imply a typical methane derived via catagenesis and possible entry into the lowermost portion of a salt seal. The values from the upper halite and the potash interval have very positive carbon values so that the resulting plot field lies outside that  typical of a variety of methane sources (Figure 8b). Potter et al. (2004) propose that these positive values show preserve primary values and that this methane was sealed in salt since the rock was first deposited. That is positive values preserve evidence of the dominant isotopic fractionation process, which was evaporation of the mother brines. This generated a progressive 13C enrichment in the carbon in the residual brines due to preferential loss of 12CO2 to the atmosphere. The resulting CH4 generated in the sediments, as evaporation and precipitation advanced, so recording this 13C enrichment in the carbon reservoir. Therefore, the isotopic profile observed in this sequence today represents a relict primary feature with little evidence for postdepositional migration. This is a very different association to the methane interpretation based on gases held the US Gulf coast or the Siberian salts. 

    The most obvious conclusion across everything we have considered in this article is that, at the level of gas in an individual brine inclusion measure, there is not a single process set that explains gas compositions in salt. Any gas association can only be tied back to its origins if one studies gas compositions in the framework of the geological history of each salt basin. We shall return to this notion in the third article in this series when we will lock at emplacement mechanisms that can be tied to depositional and diagenetic features and compositions at the macro scale.

    References

    Anderson, S. B., and W. P. Eastwood, 1968, Natural Gas in North Dakota, Natural Gases of North America, Volume Two, American Association of Petroleum Geologists Memoir 9, p. 1304-1326.

    Andreyko, S., O. V. Ivanov, E. A. Nesterov, I. I. Golovaty, and S. P. Beresenev, 2015, Research of Salt Rocks Gas Content of III Potash Layer in the Krasnoslobodsky Mine Field: Eurazian Mining - Gornyi Zhurnal, v. 2, p. 38-41.

    Apollonov, V. N., 1976, Ammonium ions in sylvine of the Upper Kama deposit. Doklady Akademii Nauk SSSR: Earth Science Section 231, 101. English Translation American Geological Institution.

    Bessert, F., 1933, Geologisch-petrographische Untersuchungen der Kalilager des Werragebietes: Archiv flit Lagerstättenforschung, H. 57, 45 S., Berlin.

    Dietz, C., 1928a, Überblick über die Salzlagerstätte des Werra-Kalireviers und Beschreibung der Schāchte "Sachsen-Weimar" und "Hattorf": Z. dt. Geol. Ges., Mb., v. 1/2, p. 68-93.

    Dietz, C., 1928b, Die Salzlagerstätte des Werra-Kaligebietes. - Archiv für Lagersttättenforschung, H. 40, 129 S., Berlin. .

    Fiveg, M. P., 1973, Gases in salts of Solikamsk deposit (in Russian): Trudi VNIIG 64, 62-63.

    Frantzen, W., 1894, Bericht über neue Erfarungen beim Kalibergbau in der Umgebung des Thüringer Waldes: Jb. kgl. preuB, geol. L.-A. u. Bergakad., v. 15, p. 60-61.

    Freyer, H. D., and K. Wagener, 1975, Review on present results on fossil atmospheric gases trapped in evaporites: pure and applied geophysics, v. 113, p. 403-418.

    Grishina, S., J. Dubessy, A. Kontorovich, and J. Pironon, 1992, Inclusions in salt beds resulting from thermal metamorphism by dolerite sills (eastern Siberia, Russia): European Journal of Mineralogy, v. 4, p. 1187-1202.

    Grishina, S., J. Pironon, M. Mazurov, S. Goryainov, A. Pustilnikov, G. Fonderflaas, and A. Guerci, 1998, Organic inclusions in salt - Part 3 - Oil and gas inclusions in Cambrian evaporite deposits from east Siberia - A contribution to the understanding of nitrogen generation in evaporite: Organic Geochemistry, v. 28, p. 297-310.

    Gropp, 1919, Gas deposits in potash mines in the years 1907-1917 (in German): Kali and Steinsalz, v. 13, p. 33-42, 70-76.

    Headlee, A. J. W., 1962, Hydrogen sulfide, free hydrogen are vital exploration clues: World Oil, Nov, 78-83.

    Herrmann, A. G., and B. J. Knipping, 1993, Waste Disposal and Evaporites: Contributions to Long-Term Safety: Berlin, Heidelberg, Springer, 190 p.

    Jockwer, N., 1984, Laboratory investigations on radiolysis effects on rock salt with regard to the disposal of high-level radioactive wastes: McVay, G. L. Scientific basis for nuclear waste management Vii. Battelle, Pac. Northwest Lab., Richland, Wa, United States. Materials Research Society Symposia Proceedings, v. 26, p. 17-23.

    Knabe, H.-J., 1989, Zur analytischen Bestimmung und geochemischen Verteilung der gesteinsgebundenen Gase im Salinar (Concerning the analytical determination and geochemical distribution of rock-bound gases in salt): Zeitschrift für Geologische Wissenschaft, v. 17, p. 353-368.

    Knipping, B., 1989, Basalt intrusions in evaporites: Lecture Notes in Earth Sciences (Springer-Verlag), v. 24, p. 132 pp.

    Kupfer, D. H., 1990, Anomalous features in the Five Islands salt stocks, Louisiana: Gulf Coast Association of Geological Societies Transactions, v. 40, p. 425-437.

    Marchant, L. C., 1966, Nitrogen gas in five oilfields on the Nesson anticline: US Bureau Mines, Report Invest., no. 6848.

    Molinda, G. M., 1988, Investigation of Methane Occurrence and Outbursts in the Cote Blanche Domal Salt Mine, Louisiana US Bureau of Mines Report of Investigation No. 9186, 31 p.

    Nesmelova, Z. N., and L. G. Travnikova, 1973, Radiogenic gases in ancient salt deposits: Geochemistry International, v. 10, p. 554-555.

    Panno, S. V., and P. Soo, 1983, An evaluation of chemical conditions caused by gamma irradiation of natural rock salt.: Brookhaven National Laboratory Report NUREG-33658.

    Potter, J., M. G. Siemann, and M. Tsypukov, 2004, Large-scale carbon isotope fractionation in evaporites and the generation of extremely 13C-enriched methane: Geology, v. 32, p. 533-536.

    Savchenko, V. P., 1958, The formation of free hydrogen in the earth's crust, as determined by the reducing action of the products of radioactive transformations of isotopes: Geochemistry (Geokhimiya)

    Schatzel, S. J., and D. M. Hyman, 1984, Methane content of Gulf Coast domal rock salt, United States Dept. of the Interior, Bureau of Mines Report of Investigation, No 8889, 18 p.

    Schoell, M., 1988, Multiple origins of CH4 in the Earth: Chemical Geology, v. 71, p. 1-10.

    Schofield, N., I. Alsop, J. Warren, J. R. Underhill, R. Lehné, W. Beer, and V. Lukas, 2014, Mobilizing salt: Magma-salt interactions: Geology, v. 42, p. 599-602.

    Siemann, M. G., and B. Ellendorff, 2001, The composition of gases in fluid inclusions of late Permian (Zechstein) marine evaporites in Northern Germany: Chemical Geology, v. 173, p. 31-44.

    Smetannikov, A. F., 2011, Hydrogen generation during the radiolysis of crystallization water in carnallite and possible consequences of this process: Geochemistry International, v. 49, p. 916-924.

    Tikhomirov, V. V., 2014, Molecular nitrogen in salts and subsalt fluids in the Volga-Ural Basin: Geochemistry International, v. 52, p. 628-642.

    Uerpmann, E. P., and N. Jockwer, 1982, Salt as a Host Rock for Radioactive Waste Disposal: In: Geological Disposal of Radioactive Waste: Geochemical Progress. Paris, France: Organization for Economic Cooperation and Development, Nuclear Energy Agency.

    Urai, J. L., Z. Schléder, C. J. Spiers, and P. A. Kukla, 2008, Flow and Transport Properties of Salt Rocks, in R. Littke, ed., Dynamics of complex intracontinental basins: The Central European Basin System, Elsevier, p. 277-290.

    Vovk, I. F., 1978, On the source of hydrogen in potassium deposits: Geochem. Int., v. 15, p. 86-90.

    Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3), Berlin, Springer, 1854 p.


     

    Gases in Evaporites; Part 1 - Rockbursts and gassy outbursts

    John Warren - Monday, October 31, 2016

    The next three articles discuss gases held within salt and is an attempt to address the following questions; 1) What is the scale and location of known rock-bursts/gas-outbursts in salt rock 2) Where do gases reside in a salt mass at the micro- and meso-scale? 3) What are the gases held in salt? 4) How are gassy salts distributed across various salt deposits across the world (macro-scale) and what are the lithological associations? Topics 1 and 2 are the main focus of the first article, topic 3 mostly in the second, while topic 4, where do gases held in salt generate and reside at the scale of a salt mass or salt bed
    is the focus of article 3. Along the way, we shall also discuss whether some of the encapsulated gases in salt can be considered samples of the ambient atmosphere that have been held in brine inclusions since the salt bed was first precipitated? And, as a corollary, we will come to a discussion of how did some of the occluded gases first enter or remobilize through the salt mass during the long history of burial and salt flow (halokinesis) experienced by all ancient evaporite units?


    Gases in evaporites can create problems

    Various gases such as, carbon dioxide, nitrogen, methane, hydrogen and hydrogen sulfide, can occur in significant volumes in and around domal salt masses or bedded evaporite deposits, as seen in numerous documented examples in mines and drilling blowouts in Louisiana, New Mexico, Germany, Poland and China (Figures 1, 2; Table 1). Gases are held in pressurized pockets in the salt that, if intersected, can create stability and safety problems during an expansion of operations in an active salt mine or during petroleum drilling, especially if the pockets contain significant levels of toxic or flammable gases, sufficient to drive rockbursts or gassy outbursts into the adjacent opening. A gas outburst (or rockburst) is defined as an unexpected, nearly instantaneous expulsion of gas and rock salt from a mine production face, normally resulting in an expanded open cavity in the salt. Outburst cavity shapes are generally metre- to tens of metre-scale combinations of conical, cylindrical, hemispherical, or elongated shapes with an elliptical cross section decreasing in diameter away from the opening (Figure 1). Many mapped examples in salt mines of the US Gulf coast have the shape of a cornucopia (Molinda, 1988).


    In the case of blowouts during oil-well drilling, there are two dominant styles of overpressured-salt encounters. The first, and the main focus in blowout discussions this article) is when gassy fluid outbursts occur internally in the salt unit as it is being drilled. Generally, this happens on the way to a test a deeper subsalt target, or less often on the way to test as series of intrasalt beds. Once intersected, pressures in such intrasalt pockets tend to bleed off and so decrease in hours to days as pressure profiles return to normal (Finnie, 2001; Warren 2016; Chapter 8). Providing the drilling system was designed to deal with short-term high-pressure outbursts, drilling can continue toward the target. The other type of gas outburst encountered when drilling salt is located in or near the periphery of a salt mass or bed, especially where the drill bit breaks out on the other side of a salt mass into a highly overpressured and fractured fluid reservoir. Such intersections allow the drill stem to connect with a large highly-overpressured volume of fluids, with the open fractures facilitating extremely high rates of fluid flow into the well bore. This type of breach draws on a significant fluid volume and a resulting blowout can continue unabated for weeks or months.

    Perhaps one the most impressive examples of this type of blowout, and the ability of evaporite unit to seal and maintain an overpressured subsalt pressurized cell, comes from the Alborz 5 discovery in Central Iran (Figure 2; Morley et al., 2013; Gretener, 1982; Mostofi and Gansser, 1957). Earlier wells testing the Alborz Anticline had failed to reach target due to drilling difficulties coming from “an extremely troublesome evaporite section[i] that continually menaced drilling and caused numerous sidetrack operations.” So difficult was drilling through this stressed Upper Red Formation salt unit that it had taken eight months for a previous well to drill through some 170 metres of evaporitic sediments to reach the Qom target. Later wells testing a Qom Fm. target, like Aran-1 to the south of the Alborz anticline, did not intersect thick stressed halite above the Qom Fm., only an anhydrite layer that perhaps was the dissolution residues of former halokinetic salt mass (pers obs.). The discovery well in the Alborz anticline (Alborz 5) had drilled through some 2296 m of middle to late Tertiary clastics and some 381 metres of Oligo-Miocene salines in the lower part of the Upper Red Formation and made up of siliciclastics, banded salt, anhydrite (Figure 3). On its way to the blowout point, the lower part of the well trajectory had penetrated normally to slightly overpressured dirty salt (halokinetic) and then penetrated some 5 cm into the fractured subsalt Qom Limestone (Oligo-Miocene). On August 26, 1956, the entire drill string and mud column were blown back out the hole and many metres into the air. At that time, the mud pressure was 55 MPa (8,000 psi) at a reservoir depth of 2700 m (8,800 ft), a pressure depth ratio of 20.5 kPa/m or 0.91 psi/ft (a lithostatic value!). Over 82 days, the well released 5 million barrels of oil and a large, but unknown quantity of gas before it self-bridged and the flow died on November 18, 1956. The temperature of the oil at the surface was measured at 115°C and at the time of the blowout the mud column density was 2.07 x 103 kg/m3 (129 lb/ft3)(see Figure 3). This type of subsalt overpressured gas occurrence illustrates salt’s ability to act as a highly effective seal holding back huge volumes of highly overpressured fluid. Associated occluding processes are discussed in an earlier series of Salty Matters articles dealing with salt as a seal, especially the article published March 13, 2016.

     

    Gassy salt (knistersalz)

    Much of the occluded gas in a salt body, prior to release into a mine opening or well bore, is held within inclusions within salt crystals or in intercrystalline positions between the salt crystals. Gas-entraining rock salt, was known from salt mines of Poland and in East Germany since the 1830s and described as knistersalz (literally translates as “crackling salt”). In many mines, walking on knistersalz releases gas as little popping sounds from underfoot. The pressure of the shoe adds a little more stress to an already gas-stressed fragment of salt (Roedder, 1972, 1984). Dumas (1830) first described such “popping salt from Wieliczka, Po­land, and concluded that gas was evolved, presumably from compressed gas inclusions, upon dissolving the salt. Further details on the occurrence were given by Rose (1839). As we shall see, this type of salt can cause serious mine accidents when large volumes of salt explo­sively and spontaneously decrepitate into the mine openings as rockbursts. Dumas (1830) and Rose (1839) found the released gas from "popping " salt in Germany to be inflammable. Bun­sen (1851, p. 251) found 84.6 % CH4 in the gas released during the dissolution of Wieliczka salt, while in many early mines in Germany the occluded gas phase is dominated by nitrogen or carbon dioxide (see Article 2). 

    Knistersalz will "pop" sporadically once placed in water, releasing pressurized gas bubbles as the salt matrix dissolves. This simple demonstration of gas presence is also the foundation for one method of determining the gas content of a rock salt sample (Hyman, 1982). The sometimes rather energetic "pops" that can occur as gases are released from a gas-enriched rock salt sample attest to the high pressures under which the gases are occluded. Pressures postulated in knistersalz can be near-lithostatic and even higher depending on local stresses, related to the low creep limits of rock salt, particularly around mine openings. According to Hoy et al. 1962, CO2-bearing gas mixtures in the knistersalz of the Winnfield salt dome (Louisiana, USA) is under a pressure of 490 - 980 bar (49 - 98 MPa) at 0°C. Similar values (500 - 1000 bar or 50 - 100 MPa) are given by Hyman (1982) for gas bubbles held in rock salt in various Louisiana salt domes. For example, during exploratory drilling in one such Louisiana salt dome, methane gas was released from the salt under a pressure of 62 bar (6.2 MPa) at a flow rate of 1.2 m3/hr (Iannachione et al., 1984). 

    Mining causes a pressure drop in the rock salt as it is extracted from a working face and such pressure drops can change the phase of a fluid occluded in salt, or change the solubility of a gas dissolved in such a fluid. Carbon dioxide, in particular, is susceptible to a phase change because its critical point is close to some ambient mining conditions. As long as CO2 is present above 1070 psi (7.4 MPa) and below 31°C (88°F; critical point), it will be in a liquid phase. Such conditions are not typical in salt mines in the US. However, CO2 generally exists as a liquid in rock salt in many German potash mines (Gimm, Thoma and Eckart, 1966). When mining drops the pressure (from lithostatic to near atmospheric) the CO2 phase will change to a gas, causing abrupt expansion. The sudden change also results in a 5 to 6°C cooling, as measured in regions near large outbursts (Wolf, 1966). The solubility of gases dissolved in brine also changes when mining. For example, the solubility of methane in brine is extremely low at atmospheric pressure and so is released as gas bubbles from a brine issuing from rock salt fissures upon mining, as observed in a number of US Gulf Coast salt mines (Iannacchione and Schatzel, 1985).

    Pressures released during an outburst result in velocities at the outburst throat which can be very large and locally approach sonic velocities (Ehgartner et al., 1998). Velocities of more than 152 m/sec (500 ft/s) have been recorded in vertical airways some distance from rockbursts in Germany. Velocities at the rockburst site would be even higher. Narrow throat characteristic of some rockbursts can result in throttling. However, associated pressure waves are not strong enough to cause the observed levels of equipment destruction, since they are of a magnitude similar to those found in blasting. Rather, observed damage associated with rockbursts is due to flying debris in the pressure wave as the quantities of rock thrown out by the burst have high kinetic energy (Wolf, 1966). 

    Given the relatively impermeable nature of bedded and halokinetic salt, occluded gases generally are not released from their containment unless mining or drilling activities intercept (1) a gas-filled fissure zone, an area where the voids between the salt crystals are interconnected, (2) a mechanically unstable zone of gas-enriched salt that disaggregates, releasing its entrained gases (a blowout), or (3) as the mine or the drill bit enters some other relatively permeable geologic anomaly (Kupfer, 1990).

      

    Gassy outbursts and rockbursts in salt

    Outbursts are documented in the U.S., Canada, and throughout northern Europe in various salt and potash mines (Figure 2; Table 1). The salt domes of northern Europe and the US Gulf coast are in particular loaded with pockets of abundant gas inclusions (Ehgartner et al., 1998). Many dangerous pockets of methane and H2S were intersected during the opening of shafts into the domes of Zechstein salts in the Saxony region, Germany and several early potash mines in the area were abandoned because of problems caused by rockbursts and associated gas outflows (Gropp, 1919; Löffler, 1962; Gimm, 1968). Before the current practice of evacuating any gas-prone salt mine prior to blasting, many fatalities resulted from such gas and rock outbursts (Table 1). A significant portion of the deaths was due to secondary factors (post-rockburst), such as methane fires, CO2 suffocation, and H2S poisoning (Dorfelt, 1966). Even with the practice of mine evacuation prior to blasting, outburst gases have in some cases filled a mine, blown out of the mine shafts, and caused fatalities at the surface. This was the case in Menzengraben in 1953, as heavier-than-air CO2 gas, released by a blasting-induced rockburst, blew out of the mine shafts for 25 minutes and flowed downhill into a nearby village, where it ponded and ultimately suffocated 3 people in their sleep (Hedlund, 2012)

    The most frequent and largest rockbursts and gas outflows from subsurface salt occurred in the Werra mining district in former East Germany. Gimm and Pforr (1964) report that rockbursts occurred every day in the Werra region. If one also includes potash mines in the Southern Harz region, more than 10,000 outbursts were recorded up till the 1960s in the German salt mines (Dorfelt, 1966). The 1953 Menzengraben(Potash Mine No. 3) rockburst blew out some 100,000 metric tons of fractured rock salt (approximately 1.6 million cubic feet). This may well be the world’s largest rockburst in terms of cavity size (Gimm, 1968). In an earlier incident in the same region in 1886, the shaft Aschersleben II was flooded with water and gas as it reached a depth of 300 m. A pilot hole drilled from the temporary bottom of the shaft into the underlying Stassfurt rock salt, hit a gas pocket, releasing a combination of H2S—CH4—N2 gases, which then escaped under high pressure for some two hours carrying with it an NaCl brine to the height of a “house” above the shaft floor before the outflow abated. The shaft was abandoned (Baar, 1977).

    In 1887 the shaft Leopoldshall III, at Stassfurt, had been sunk through the caprock, and into the Zechstein salt to a total depth of 412 m subsurface, when it hit a gas pocket containing H2S, and four miners were killed by gas escape. Subsequently, in 1889, seven more were killed during shaft construction in the same mine. In 1895, a large volume of CO2 was released from rock salt at a depth of 206 m during the sinking of the Salzungen shaft (Gimm 1968, p. 547). Numerous other outbursts of gas occurred in the same Werra-Fulda district with most mines operating at depths greater than 300 meters, with outbursts responsible for a number of deaths both below and above ground. According to Gimm (1968, p. 547), since 1856, toxic gases were also encountered during the sinking of a number of other shafts in the Stassfurt area. Gropp (1918) documents 106 gas occurrences in German potash mines for the period 1907 to 1917, at depths of ≈300 meters and greater. Many of these gassy encounters caused casualties, particularly in salt dome mines of the Hannover area where several of the potash mines were abandoned due to dangerous gas intersections (Barr, 1977).

    Less severe examples of gas outbursts and rockbursts transpired in other salt mines around the world (Figure 2). More than 200 gas outbursts with ejected rock salt volumes up to 4500 tons have occurred in the Upper Kama potash deposits of Russia (Laptev and Potekhin, 1989). Baltaretu and Gaube (1966) reported sudden gassy outbursts in potassium salt deposits in Rumania. Outbursts in Polish salt mines were noted by Bakowski (1966). Potash mines in England and Canada also exhibited outbursts (Table 1; Schatzel and Dunsbier, 1988) with the most recent case being a gassy outburst that caused a fatality in the Boulby mine in July 2016.

    Major rockbursts, tied to methane releases, occurred in Louisiana in four of the 5-Island salt mines exploiting the crestal portions of subcropping salt domes (Belle Isle, Cote Blanche, Weeks Island, and Jefferson Island) with the exception of Avery Island. Gassy outbursts, of mostly CO2, also occurred at the Winnfield salt mine, Louisiana (Table 1). Rockburst diameters range from a few inches up to over 50 ft. Cavity heights range from several inches to several hundred feet. Smaller rockburst and cavities in the Five-Island mines were ordinarily not reported (Kupfer,1990). Only the more gas-inclusion-rich salt decrepitates in these mines, and the concave curvatures of the walls are such that the resulting slight additional confining force from the concavity keeps the remaining salt from decrepitating further (Figures 1, 4; Roedder, 1984).


    The larger outburst shapes tended to be cornucopian in shape, whereas the shorter ones were conchoidally shaped with symmetrical dimensions (Figure 4). Outbursts approaching several hundred feet high were documented in the Jefferson Island and Belle Isle mines. The disaster at Belle Isle mine in 1979, in which five miners died, proved that high-pressure methane in large quantities could be released near instantaneously during a rockburst. It was estimated that more than 17,000 m3 (600,000 ft3) of methane was emitted by the 1979 outburst (Plimpton, et al.,1980). At the former Morton mine at Weeks Island, an even larger gas emission apparently occurred in connection with a rockburst. It was estimated that as much as 1,020 m3 (36,100 ft3) of salt was released as 1.4 million m3 (50 million ft3) of gas filled the former Morton Mine (MSHA,1983). If the limited number of sample points represent a well-mixed mine atmosphere, the gas alone would occupy approximately 17,000 m3 (600,000 ft3) in the salt at lithostatic pressure (Plimpton, et al.,1980).

    Outbursts occurred during mining in all three of the mines at Weeks Island - the “old” Morton mine (the site of the now abandoned U.S. Strategic Petroleum Reserve), the Markel mine, and the “new” Morton mine. Perhaps the largest outburst at the “new” Morton mine occurred on October 6, 1982, in the southwest corner of the 1200-ft level, close to the edge of the dome. A balloon with an attached measuring string is typically used to estimate the height of the major vertical outbursts. A balloon went up more than 30 m (100 ft) into an outburst some 10 m (35 ft) wide (MSHA, 1983). Outbursts in the old Morton mine occurred only in the larger lower level (-800 ft) of the two level mine outside the vertically projected boundary of the upper (-600 ft) level. A similar trend was noted at Jefferson Island where no gas outbursts occurred in the upper level of the mine. The outbursts observed at the Jefferson Island mine were in the same relative position at both the 1300-ft and 1500-ft levels. This is attributed to the near vertical orientation of a very gassy zone of salt (Iannacchione, et al., 1984). Structural continuity (banding) is nearly vertical in many Gulf coast salt dome diapirs, except where the top of the dome has mushroomed. As a result, horizontal runs of outbursts have reportedly been small, and unlikely to connect caverns separated by 100 ft or more (Thoms and Martinez, 1978.).

    The geometry of the gas pockets is not well known. Thoms & Martinez (1978) argued that prior to the rockburst the gas is concentrated in vertical, cylindrical zones or pockets, which were created and elongated by the upward movement of the salt. Mapping in the Five-Island mines shows that the rockbursts are often aligned along structural trends . At Winnfield (Hoy et al., 1962), and possibly at Belle Isle (Kupfer,1978), the outbursts occur close to the edge of the dome. In other cases (e.g., Cote Blanche and Belle Isle) the outbursts follow structural trends such as shear zones within the dome (Kupfer, 1978). In all cases, there is an association between methane gas occurrence and other anomalous features such as dirty salt, sediment inclusions and oil or brine seeps (see article 2).

    Rockbursts are not limited to gassy intersections in domal salt. High-pressure pockets of inert gas, typically nitrogen, are documented in bedded potash mines (Carlsbad, NM), and combustible gases (methane)and fluids (brine and oil) in potash mines in Utah (Djahanguiri, 1984). The Cane Creek potash mine (Utah). exploiting halokinetic salts sandwiched by the bedded formations of the Paradox Basin, had a history of fatalities and extensive equipment damage as a result of rockbursts (Westfield, et al., 1963). In contrast, no gassy outbursts were reported during the construction and operation of the Waste Isolation Pilot Plant in the bedded salts of southeastern New Mexico. During WIPP construction, routine drilling ahead of the road-header checked for gas, but found very little (Munson, 1997).

    In my opinion, some gas pockets in domal salt can be related to the diagenetic process creating a caprock, where metahne and H2S are typical byproducts. In others, the gases are related to the burial history and recrystallisation (partially preserving primary nitrogen), while in yet others, the gas release is related to heating and alteration especially of the hydrated salts (hydrogen) and associated fracturing related to igneous intrusion (CO2). In some cases, gases were encountered in fracture systems of cap anhydrite close to the top or edge of the salt dome; such fracture systems apparently had connections to the groundwater as the gassy outbursts were followed by water of varying salinity. In other cases, fracture systems headed by a gas cap connected the expanding mine to overlying aquifers and ongoing salt dissolution was facilitated. But, in most cases of rockburst located within the interior of a salt mass, the majority of the intersected gas pockets are isolated, as once the burst occurred most cavities tended to receive little if any subsequent recharge, so gas and brine outflow rates tended to decrease to zero across hours to days (Loffler, 1962). The relationship between the type of gas, its position in the salt, and possible lithological associations are documented and discussed in detail in articles 2 and 3.

     

    The physics that drives rock and gas outbursts in an expanding mine-face or shaft is relatively straightforward. In the petroleum industry, it constitutes a process set that is already well documented as the cause of many salt-associated gassy blowouts such as Alborz 5 (Figure 3; Warren, 2016 – Chapter 8 for detail on pressure distribution in and about a salt mass). Oilfield blowouts associated with salt occur when pore pressures in fluids in the drilled rock approach or even exceed lithostatic and the weight of mud in the approaching borehole is not sufficient to hold back this overpressured fluids entering and escaping up the borehole (Figure 3). Spindletop and other famous caprock blowouts in the early days of salt dome drilling in Texas and Louisiana are famous examples of this process (Figure 5). Ehgartner et al. (1998) argue that the same pressure release occurs as an expanding mine face approaches a gassy zone in the mined salt. Once the pressure is reduced by the approach of the mine face, the release of gas formerly held in place by lithostatic pressure within a homogenously stressed salt mass will release, the enclosing rock salt will lose cohesion and so a rockburst (gas outburst) occurs (Figure 6).

     

    How is the gas held and distributed within salt at the micro and mesoscale (microns to metres)?

    That free gas and gas in inclusions occur simultaneously in salt masses is undeniable, numerous examples come from salt mines and salt cores (Table 1). Gases are held in evaporite salts in three ways (Hermann and Knipping, 1993); 1) Crack- and fissure-bound gases, 2) Mineral-bound gases, a) intracrystal, b) intercrystal, and 3) Absorption-bound gases. Type 1 occurrences, as the name suggests, are defined by gas accumulations in open fractures and fissures, typically in association with brine. Some occurrences are tied to pressurized aquifers, others are isolated local accumulations within the salt. Intracrystal gas occurs as bubbles, some elongate, some rounded in brine inclusions that are fully enclosed within a crystal (typically halite). At the micro (thin section-SEM scale), intracrystalline gases typically form as a few to aggregates of small bubbles, arranged along crystallographic axes or planes, with bubble diameters in the range 1 to 100 µm. Intercrystalline gases occupy the boundary planes of crystals in contact with one another, that is intercrystalline gases occupy polyhedral porosity. According to Hermann and Knipping (1993), up to 90% of the mineral-bound CO2gas mixtures in the salt rocks of the Werra-Fulda mining district is likely intercrystalline, and the remaining 10% is intracrystalline. Absorption bonding is likely an independent form of gas fixation in salt. Adsorptive bonding describes the ability of solids, especially clays, and crystalline compounds to store gas on their surfaces in the form of layered molecules, most would term this a subset of microporous gas storage in a shale.


    [i]The stresses in and around and in salt structures can be high and troublesome to stabilize, even today and is an indication of the ongoing dynamic nature of salt flow and recrystallisation in the subsurface.Therefore, if borehole fluid pressure is lower than salt strength during drilling, stress relaxation may significantly reduce open-hole diameters. In some cases, relaxation causes borehole restrictions even before drilling and completion operations are finished and casing has been set.

    References 

    Bakowski, J., M. Dialy, A. Litonski, and J. Poborski, 1966, Concurrence, Investigation and Forecasting of Sudden Outbursts in Polish Salt Mines: In; International Congress on Problems of Sudden Outbursts of Gas and Rock. Leipzig, German Democratic Republic, October, 1966.

    Baltaretu, R., and R. Gaube, 1966, A Sudden Outburst of Gas and Rock in Particular Conditions: In; International Congress on Problems of Sudden Outbursts of Gas and Rock. Leipzig, German Democratic Republic, October, 1966.

    Barr, C. A., 1977, Applied Salt-rock Mechanics: The in-situ behavior of salt rocks, v. 1: Berlin, Elsevier, 294 p.

    Bunsen, R., 1851, Ueber die Processe der vulkanischen Gesteinsbildungen Islands: Annalen Physik u. Chemie, v. 83, p. 197-272. Translated in Tyndall, John, and Francis, William, eds., Science Memoirs, Natural Phi­losophy [New Ser.]: London, Taylor and Francis, v. 1, pt. 1, p.33-98, 1852.

    Chaturvedi, L., 1984, Occurrence of Gas in the Salado Formation: Report for State of New Mexico, Environmental Evaluation Group, EEG-25, Santa Fe, NM. 30 p.

    Djahanguiri, F., 1984, Critical Aspects of Mining Technology in Excavation of a Nuclear Waste Repository in Salt: In; International Society of Rock Mechanics, Symposium on Design and Performance of Underground Excavations, Paper 39.

    Dorfelt, H., 1966, Sudden Outbursts of Gas and Rock in the Mining of the GDR in Relation to the Safety in Mines: In: International Congress on Problems of Sudden Outbursts of Gas and Rock. Leipzig, German Democratic Republic, October, 1966.

    Dumas, J., 1830, Note sur une variete de sel gemme qui decrepite au contact d l'eau: Annales Chimie et Physique, v. 43, p. 316-320.

    Ehgartner, B. L., J. T. Neal, and T. E. Hinkebein, 1998, Gas Releases from Salt: SAND98-1354, Sandia National Laboratories, Albuquerque, NM, June 1998.

    Finnie, A. B., 2001, A Case Study of High Pressure Brine Flows within the Zechstein Supergroup of the Southern North Sea: SPE Paper 67781 Presented at the SPE/IADC Drilling Conference held in Amsterdam, the Netherlands, 27 February-1 March 2001.

    Gimm, W., 1968, Kali- und Steinsalzbergbau. 1, Aufschluß und Abbau von Kali- und Steinsalzlagerstätten (Potash and rock salt mining. 1, Decomposition and degradation of potash and rock salt deposits): Leipzig, Deutscher Verlag für Grundstoffindustrie.

    Gimm, W., and H. Pforr, 1964, Breaking Behavior of Salt Rock Under Rockbursts and Gas Outbursts: In: 4th International Conference on Strata Control and Rock Mechanics, Columbia University, NY, May 4-8, 1964.

    Gimm, W., K. Thoma, and D. Eckart, 1966, Organization and Scientific Results of the Work of the “Mineralgebundene Gase” Research Group: In; International Congress on Problems of Sudden Outbursts of Gas and Rock. Leipzig, German Democratic Republic, October, 1966.

    Gretener, P. E., 1982, Another look at Alborz nr. 5 in Central Iran: Vereinigung Schweizerischer Petroleum-Geologen und Ingenieure Bulletin, v. 48, p. 1-8.

    Gropp, 1919, Gas deposits in potash mines in the years 1907-1917 (in German): Kali and Steinsalz, v. 13, p. 33-42, 70-76.

    Hedlund, F. H., 2012, The extreme carbon dioxide outburst at the Menzengraben potash mine, 7 July 1953: Safety Science, v. 50, p. 537-553.

    Hermann, A. G., and B. Knipping, 1993, Waste disposal and evaporites: Lecture Notes in Earth Sciences (Springer-Verlag), v. 24, p. 193.

    Hoy, R. B., R. M. Foose, and B. J. O'Neill Jr., 1962, Structure of Winnfield salt dome, Winn Parish, Louisiana: American Association Petroleum Geologists - Bulletin, v. 46, p. 1444-1459.

    Hyman, D. M., 1982, Methodology for determining occluded gas contents in domal salt rock: US Bureau of Mines report of Investigation #8700.

    Iannacchione, A., R. Grau, A. Sainato, T. Kohler, and Schatzel, 1984, Assessment of Methane Hazards in an Anomalous Zone of a Gulf Coast Salt Dome: Bureau of Mines Report of Investigations RI-8861, U.S. Dept. of the Interior.

    Kupfer, D., 1980, Problems associated with anomalous zones in Louisiana salt stocks, USA, in A. H. Coogan, and H. Lukas, eds., Fifth Symposium on Salt (Hamburg, Germany, June 1978), v. 1: Cleveland OH, Northern Ohio Geological Society, p. 119-134.

    Kupfer, D. H., 1990, Anomalous features in the Five Islands salt stocks, Louisiana: Gulf Coast Association of Geological Societies Transactions, v. 40, p. 425-437.

    Laptev, B. V., and R. P. Potekhin, 1989, Burst Triggering by Zonal Disintegration of Evaporites: Soviet Mining Science, v. 24, p. 238-241.

    Löffler, J., 1962, Die Kali- und Steinsalzlagerstätten des Zechsteins in der Dueutschen Deomokratischen Republik, Sachsen: Anhalt. Freiberg. Forschungsh C, v. 97, p. 347p.

    Molinda, G. M., 1988, Investigation of Methane Occurrence and Outbursts in the Cote Blanche Domal Salt Mine, Louisiana US Bureau of Mines Report of Investigation No. 9186, 31 p.

    Morley, C. K., D. W. Waples, P. Boonyasaknanon, A. Julapour, and P. Loviruchsutee, 2013, The origin of separate oil and gas accumulations in adjacent anticlines in Central Iran: Marine and Petroleum Geology, v. 44, p. 96-111.

    Mostofi, B., and A. Gansser, 1957, The story behind the Alborz 5: Oil and Gas Journal, 21 January 1957, p. 78-85.

    MSHA (Mine Safety and Health Administration), 1983, Report of Nonfatal Outburst of Flammable Gas, Morton Salt Division of Morton Thiokol, Inc., Weeks Island Mine, New Iberia, Iberia Parish, Louisiana: Accident Investigation Report, report 16-00970, October 6, 1982. Published, January 31, 1983.

    Munson, D. E., 1997, Constitutive model of creep in rock salt applied to underground room closure: International Journal of Rock Mechanics & Mining Sciences & Geomechanics, v. 34, p. 233-247.

    Plimpton, H. G., R. K. Foster, J. S. Risbeck, R. P. Rutherford, R. F. King, G. L. Buffington, and W. C. Traweek, 1980, Final Report of Mine Explosion Disaster Belle Isle Mine Cargill, Inc. Franklin, St. Mary Parish, Louisiana June 8, 1979: Dept. of Labor, Mine Safety and Health Administration, Report No. MINE ID 1600246, 135 p.

    Roedder, E., 1972, Chapter JJ - Composition of fluid inclusions, Data of Geochemistry (6th Edition), US Professional Paper 440-JJ, p. JJ1-JJ164.

    Roedder, E., 1984, The fluids in salt: American Mineralogist, v. 69, p. 413-439.

    Rose, H., 1839, Über das Knistersalz von Wieliczka: Annalen Physik u. Chemic, v. 48, p. 353-361.

    Schatzel, S. J., and M. S. Dunsbier, 1988, Roof Outbursting at a Canadian Bedded Salt Mine: In; U.S. Mine Ventilation Symposium, 4’h proceeding, Reno, NV, 1988.

    Thoms, R. L., and J. D. Martinez, 1978, Blowouts in domal salt: Fifth Symposium on Salt, Northern Ohio Geological Society, p. 405-411.

    Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

    Westfield, J., L. D. Knill, and A. C. Moschetti, 1963, US Bureau of Mines; Final report of major mine-explosion disaster: Cane Creek Mine, Potash Division, Texas Gulf Sulphur Company, Grand County, Utah

    Wolf, H., 1966, Aerodynamics of Sudden Outbursts of Salt and Gas: International Congress on Problems of Sudden Outbursts of Gas and Rock. Leipzig, German Democratic Republic, October, 1966.


     


    Recent Posts


    Tags

    Messinian dihedral angle causes of major extinction events causes of glaciation sulphur gas outburst CO2 Sumo Schoenite base metal climate control on salt Magdalen's Road jadarite Pangaea Hadley cell: salt ablation breccia Gamma log Seepiophila jonesi MOP hectorite Calyptogena ponderosa stevensite gassy salt evaporite-hydrocarbon association namakier sinkhole gas in salt evaporite dissolution Mesoproterozoic auto-suture Ethiopia mine stability evaporite karst stable isotope lithium brine Lake Peigneur nuclear waste storage Prairie Evaporite basinwide evaporite evaporite-metal association anthropogenically enhanced salt dissolution collapse doline Noril'sk Nickel MgSO4 enriched vadose zone silica solubility RHOB venice lithium battery salt tectonics Mulhouse Basin Ure Terrace Atlantis II Deep Catalayud hydrogen Corocoro copper halokinetic Dead Sea saltworks Lop Nur black salt dissolution collapse doline saline clay CO2: albedo hydrological indicator sulfate tachyhydrite Boulby Mine MgSO4 depleted trona dark salt Clayton Valley playa: well log interpretation salt karst ozone depletion allo-suture snake-skin chert nitrogen End-Cretaceous mummifiction Deep seafloor hypersaline anoxic lake sodium silicate sedimentary copper bischofite Jefferson Island salt mine SedEx SO2 sulfur mirabilite SOP lithium carbonate eolian transport well blowout rockburst Lomagundi Event kainitite Karabogazgol meta-evaporite intersalt gem Koppen climate sulphate doline knistersalz blowout brine evolution Danakhil Depression, Afar Crescent potash Pilbara zeolite authigenic silica Lop Nor HYC Pb-Zn geohazard gypsum dune ancient climate Ingebright Lake subsidence basin nacholite deep meteoric potash waste storage in salt cavity natural geohazard wireline log interpretation High Magadi beds halophile lot's wife 13C enrichment well logs in evaporites NaSO4 salts source rock phreatomagmatic explosion sinjarite CaCl2 brine Ripon Lamellibrachia luymesi Zaragoza Neoproterozoic Red Sea water on Mars potash ore price Stebnyk potash astrakanite Mega-monsoon methanotrophic symbionts halite DHAB Turkmenistan anthropogenic potash Proterozoic potash salt trade Density log Koeppen Climate Weeks Island salt mine epsomite hydrothermal karst Five Island salt dome trend salt seal McArthur River Pb-Zn Dead Sea caves intrasalt Bathymodiolus childressi African rift valley lakes Platform evaporite hydrohalite Lake Magadi salt periphery cryogenic salt carbon oxygen isotope cross plots oil gusher salt suture End-Triassic brine lake edge vestimentiferan siboglinids supercontinent Kara bogaz gol Archean capillary zone 18O enrichment salt leakage, dihedral angle, halite, halokinesis, salt flow, halogenated hydrocarbon North Pole Evaporite-source rock association organic matter Large Igneous Magmatic Province recurring slope lines (RSL) extrasalt magadiite lazurite Quaternary climate Precambrian evaporites endosymbiosis LIP silicified anhydrite nodules NPHI log sepiolite Musley potash marine brine seawater evolution flowing salt cauliflower chert potash ore Kalush Potash brine pan Hell Kettle phreatic explosion methanogenesis palygorskite DHAL halocarbon Neutron Log methane Dead Sea karst collapse Dallol saltpan Muriate of potash antarcticite GR log Great Salt Lake chert Belle Isle salt mine saline giant Thiotrphic symbionts Stebnik Potash K2O from Gamma Log mass die-back freefight lake MVT deposit seal capacity alkaline lake Salar de Atacama crocodile skin chert anomalous salt zones perchlorate evaporite Deep solikamsk 2 Paleoproterozoic Oxygenation Event hydrothermal potash circum-Atlantic Salt Basins H2S 18O Hadley Cell halotolerant bedded potash Hyperarid Warrawoona Group lunette 13C lapis lazuli halite-hosted cave End-Permian Belle Plain Member solar concentrator pans deep seafloor hypersaline anoxic basin water in modern-day Mars Neoproterozoic Oxygenation Event Zabuye Lake Badenian Sulphate of potash Phaneozoic climate York (Whitehall) Mine carbon cycle carnallitite salt mine vanished evaporite Patience Lake member Realmonte potash

    Archive