Salty Matters

The Blog is written by me, John Warren. Once every three or four weeks or so I will post an article or two on an evaporite topic that has piqued my interest. On the Saltwork Publications webpage (under "the Works") there is a growing library of pdfs and epubs based on these blogs. These articles on the website have much higher resolution extractable graphics in than in the blog. There is also a link to this set of pdfs and epubs on the home page (www.saltworkconsultants.com).

Brine evolution and origins of potash: primary or secondary? SOP in Quaternary saline lakes: Part 2 of 2

John Warren - Friday, November 30, 2018

 


Introduction

This, the second in this series of articles on potash brine evolution deals with production of sulphate of potash in plants that exploit saline hydrologies hosted in Quaternary saline sumps. There are two settings where significant volumes of sulphate of potash salts are economically produced at the current time; the Ogden salt pans on the northeast shore of the Great Salt Lake in Utah and Lop Nur in China. Although potassium sulphate salts precipitate if modern seawater is evaporated to the bittern stage, as yet there is no operational SOP plant utilising seawater. This is due to concurrent elevated levels of magnesium and chlorine in the bittern, a combination that favours the precipitation of carnallite concurrently with the precipitation of double sulphate salts, such as kainite (Figure 1). Until now, this makes the processing of the multi-mineralogic precipitate for a pure SOP product too expensive when utilising a marine brine feed.

 

Potash in Great Salt Lake, USA (SOP evolution with backreactions)

Today sulphate of potash fertiliser is produced via a combination of solar evaporation and brine processing, using current waters of the Great Salt Lake, Utah, as the brine feed into the Ogden salt pans, which are located at the northeastern end of the Great Salt Lake depression in Utah (Figure 2a). A simpler anthropogenic muriate of potash (MOP) brine evolution occurs in the nearby Wendover salt pans on the Bonneville salt flats. There, MOP precipitates as sylvinite in concentrator pans (after halite). The Bonneville region has a bittern hydrochemistry not unlike like the evolved Na-Cl brines of Salar de Atacama, as documented in the previous article, but it is a brinefield feed without the elevated levels of lithium seen in the Andean playa (Figure 3b).

Great Salt Lake brine contains abundant sulphate with levels sufficiently above calcium that sulphate continues to concentrate after most of the Ca has been used up in the precipitation of both aragonite and gypsum. Thus, as the brines in the anthropogenic pans at Ogden approach the bittern (post halite) stage, a series of sulphate double salts precipitate (Figure 4), along with carnallite and sylvite.


Great Salt Lake brines

The ionic proportions in the primary brine feed that is the endorheic Great Salt Lake water depends on a combination of; 1) the inflow volumes from three major rivers draining the ranges to the east, 2) groundwater inflow, 3) basin evaporation, and 4) precipitation (rainfall/snowfall) directly on the lake (Jones et al., 2009). Major solute inputs can be attributed to calcium bicarbonate-type river waters mixing with sodium chloride-type springs, which are in part hydrothermal and part peripheral recycling agents for NaCl held in the lake sediments. Spencer et al. (1985a) noted that prior to 1930, the lake concentration inversely tracked lake volume, which reflected climatic variation in the drainage. However, since that time, salt precipitation, primarily halite and mirabilite, and dissolution have periodically modified lake brine chemistry and led to density stratification and the formation of brine pockets of different composition.

Complicating these processes is repeated fractional crystallisation and re-solution (backreaction) of lake mineral precipitates. The construction of a railway causeway has restricted circulation, nearly isolating the northern from the southern part of the lake, which receives over 95% of the inflow. Given that Great Salt Lake waters are dominated by Na and Cl, this has led to halite precipitation in the north (Figures 2a, 3a; Gwynn, 2002). Widespread halite precipitation also occurred before 1959, especially in the southern area of the lake, associated with the most severe droughts (Jones et al., 2009; Spencer et al., 1985a). Spencer et al. (1985a) also described the presence of a sublacustrine ridge, which probably separated the lake into two basins at very low lake stands in the Quaternary. Fluctuating conditions emphasise brine differentiation, mixing, and fractional precipitation of salts as significant factors in solute evolution, especially as sinks for CaCO3, Mg, and K in the lake waters and sediments. The evolution of these brine/rock system depends on the concentration gradient and types of suspended and bottom clays, especially in relatively shallow systems.


Brine evolution across the Ogden pans

Figure 3a plots the known hydrochemistry of the inflow waters to the Great Salt Lake and their subsequent concentration. Evolving lake waters are always Na-Cl dominant, with sulphate in excess of magnesium in excess of potassium, throughout. Any post-halite evaporite minerals from this set of chemical proportions will contain post-halite potash bittern salts with elevated proportions of sulphate and magnesium and so will likely produce SOP rather than MOP associations. Contrast these hydrochemical proportions with the inflow and evolution chemistry in the pore brines of the Bonneville salt flat (Figure 3b) the Dead Sea and normal marine waters. Across all examples, sodium and chlorine are dominant and so halite will be the predominant salt deposited after aragonite and gypsum (Figure 4). Specifically, there are changes in sulphate levels with solar concentration (Figure 3b). In brines recovered from feeder wells in the Bonneville saltflat, unlike the nearby bajada well waters, the Bonneville salt flat brines show potassium in excess of sulphate and magnesium. In such a hydrochemical system, sylvite, as well as carnallite, are likely potassium bitterns in post-halite pans. The Wendover brine pans on the Bonneville saltflat produce MOP, not SOP, along with a MgCl2 brine, and have done so for more than 50 years (Bingham, 1980; Warren, 2016).


The mineral series in the Ogden pans

Figure 5 illustrates a laboratory-based construction of the idealised evolution of a Great Salt Lake feed brine as it passes through the various concentration pans. Figure 5 is a portion of the theoretical 25°C sulphate-potassium-magnesium phase diagram for the Great Salt Lake brine system and shows precipitates that are in equilibrium with brine at a particular concentration. Figures 4 and 5 represent typical brine concentration paths at summertime temperatures (Butts, 2002). Importantly, these figures do not describe the entire brine concentration story and local variations; mineralogical complexities in the predicted brine stream are related to thermal stratification, retention times and pond leakage. Effects on the chemistry of the brine due to the specific day-by-day and season-by-season variations of concentration and temperature, which arise in any solar ponding operation, require onsite monitoring and rectification. Such ongoing monitoring is of fundamental import when a pilot plant is constructed to test the reality of a future brine plant and its likely products.

 

Figure 6 illustrates the idealised phase evolution of pan brines at Ogden in terms of a K2SO4 phase diagram (no NaCl or KCl co-precipitates are shown; Felton et al., 2010). Great Salt Lake brine is pumped into the first set of solar ponds where evaporation initially proceeds along the line shown as Evap 1 until halite reaches saturation and is precipitated. Liquors discharged from the halite ponds are transferred to the potash precipitation ponds where solar evaporation continues as line Evap 2 on the phase diagram and potassium begins to reach saturation after about 75% of the water is removed. Potassium, sodium levels rise with further evaporation and schoenite precipitates in the schoenite crystalliser. After some schoenite precipitation occurs, the liquor continues to evaporate along the Evap 3 line to the point that schoenite, sylvite, and additional halite precipitate. Evaporation continues as shown by line Evap 3 to the point that kainite, sylvite and halite become saturated and precipitate. From this plot, the importance of the relative levels of extraction/precipitation of sulphate double salts versus chloride double salts is evident, as the evaporation plot point moves right with increasing chloride concentrations. That is, plot point follows the arrows from left to right as concentration of chloride (dominant ion in all pans) increases and moves the plot position right.


Production of SOP in the Great Salt Lake

To recover sulphate of potash commercially from pan bitterns fed from the waters of Great Salt Lake, the double salts kainite and schoenite are first precipitated and recovered in post-halite solar ponds (Figures 6, 7). The first salt to saturate and crystallise in the concentrator pans is halite. This is successively followed by epsomite, schoenite, kainite, carnallite, and finally bischofite. To produce a desirable SOP product requires ongoing in-pan monitoring and an on-site industrial plant whereby kainite is converted to schoenite. The complete salt evolution and processing plant outcome in the Ogden facility is multiproduct and can produce halite, salt cake and sulphate of potash and a MgCl2 brine product. Historically, sodium sulphate was recovered from the Great Salt Lake brines as a byproduct of the halite and potash production process, but ongoing low prices mean Na2SO4 has not been economically harvested for the last decade or so.

The complete production and processing procedure is as follows (Figure 7; Butts, 2002, 2007; Felton et al., 2010): 1) Brine is pumped from the Great Salt Lake into solar evaporation ponds where sodium chloride precipitates in the summer. 2) When winter weather cools the residual (post-halite) brine in the pans to -1 to -4°C, sodium sulphate crystals precipitate as mirabilite in a relatively pure state. Mirabilite crystals can be picked up by large earth-moving machinery and stored outdoors each winter until further processing takes place. 3) The harvested mirabilite can be added to hot water, and anhydrous sodium sulphate precipitated by the addition of sodium chloride to the heated mix to reduce sodium sulphate solubility through the common ion effect. The final salt cake product is 99.5% pure Na2SO4. 4) To produce SOP, Great Salt Lake brines are allowed to evaporate in a set of halite ponds, until approaching saturation with potassium salts. The residual brine is then transferred to a mixing pond, where it mixes with a second brine (from higher up the evaporation series, that contains a higher molar ratio of magnesium to potassium. 5) This adjusted brine is then allowed to evaporate to precipitate sodium chloride once more, until it is again saturated with respect to potassium salts. 6) The saturated brine is then transferred to another pond, is further evaporated and precipitates kainite (Figures 5, 6). Kainite precipitation continues until carnallite begins to form, at which time the brine is moved to another pond and is allowed to evaporate further to precipitate carnallite. 6) Some of the kainite-depleted brine is recycled to the downstream mixing pond to maintain the required molar ratio of magnesium to calcium in this earlier mixing pond (step 4). 7) Once carnallite has precipitated, the residual brine is transferred to deep storage and subjected to winter cooling to precipitate additional carnallite as it is a prograde salt. 8) Cryogenically precipitated carnallite can be processed to precipitate additional kainite by mixing it with a kainite-saturated brine. 9) MgCl2-rich end-brines in the post-carnallite bittern pans are then further processed to produce either MgCl2 flakes or a 32% MgCl2 brine. These end-bitterns are then used as a feedstock to make magnesium metal, bischofite flakes, dust suppressants, freeze preventers, fertiliser sprays, and used to refresh flush in ion exchange resins.

Some complexities in the observed mineral precipitation series in the Ogden Pans

Under natural solar pond conditions in the Ogden Pans, the brine temperature fluctuates with the air temperature across day-night and seasonal temperature cycles, and there is a lag time for temperature response in waters any brine pan, especially if the pan is heliothermic. Atmosphere-driven fluctuations in temperature results in changes in ion saturations, which can drive selective precipitation or dissolution of salts in the brine body. Air temperature in the Ogden pans may be 35°C during the day and 15°C at night. Brine at point A in figure 5 may favour the formation of kainite during the daytime and schoenite at night. The result of the diurnal temperature oscillation is a mixture of both salts in a single pond from the same brine. In terms of extracted product, this complicates ore processing as a single pan will contain both minerals, produced at the same curing stage, at the same time, yet one double salt entrains KCl, the other K2SO4, so additional processing is necessary to purify the product stream (Butts, 2002).

The sulphate ion in the pan waters is particularity temperature sensitive, and salts containing it in GSL pans tend to precipitate at cooler temperatures. Surficial cooling during the summer nights can cause prograde salts to precipitate, but the next day's heat generally provides sufficient activation energy to cause total dissolution of those salts precipitated just a few hours before (Butts, 2002). It is not unusual to find a 0.5 cm layer of hexahydrite (MgSO4.6H2O) at the bottom of a solar pond in the morning, but redissolved by late afternoon.

Under controlled laboratory conditions, brine collected from the hypersaline north arm of the Great Salt Lake will not crystallise mirabilite  until the brine temperature reaches 2°C or lower. Yet, in the anthropogenic solar ponds, mirabilite has been observed to crystallise at brine temperatures above 7°C. During the winter, as the surface temperature of the GSL pan brine at night becomes very cold (2°C or lower), especially on clear nights, and mirabilite rafts will form on and just below the brine surface and subsequently sink into the somewhat warmer brine at the floor of the pond. Because there is insufficient activation energy in this brine to completely redissolve the mirabilite, it remains on the pan floor, until warmer day/night temperatures are attained. However, it is also possible for salts precipitated by cooling to be later covered by salts precipitated by evaporation, which effectively prevents dissolution of those more temperature-sensitive salts that would otherwise redissolve (Butts, 2002).

There are also longer terms seasonal influences on mineralogy. Some salts deposited in June, July, and August (summer) will convert to other salts, with a possible total change in chemistry, when they are exposed to colder winter temperatures and rainfall. Kainite, for example, may convert to sylvite and epsomite and become a hardened mass on the pond floor; or if it is in contact with a sulphate-rich brine, it can convert to schoenite. Conversely, mirabilite will precipitate in the winter but redissolve during the hot summer months.

The depth of a solar pond also controls the size of the crystals produced. For example, if halite (NaCl) is precipitated in a GSL pond that is either less than 8 cm or more than 30cm deep, it will have a smaller crystal size than when precipitated in a pond between 8 and 30 cm deep. Smaller crystals of halite are undesirable in a de-icing product since a premium price is paid for larger crystals.

In terms of residence time, some salts require more time than others to crystallise in a pan. Brine that is not given sufficient time for crystallisation before it is moved into another pond, which contains brine at a different concentration, will produce a different suite of salts. For example, if a brine supersaturated in ions that will produce kainite, epsomite, and halite (reaction I), is transferred to another pond, the resulting brine mixture can favour carnallite (reaction 2), while kainite salts are eliminated.

Reaction 1: 9.75H2O + Na+ + 2Cl- + 2Mg2+ + K+ + 2SO42+ —> MgSO4.KCl +2.75H2O + MgSO4.7H2O + NaCl

Reaction 2: 12H2O + Na+ + 4Cl- + 2Mg2+ + K+ + 2SO42+ —> MgCl2.6H2O +MgSO4.6H2O + NaCl

Reaction 1 retains more magnesium as MgCl2 in the brine; reaction 2 retains more sulphate. In reaction 2, it is also interesting to note the effect of waters-of-hydration on crystallization; forcing out salts with high waters of crystallization results in higher rates of crystallization. The hydrated salts remove waters from the brine and further concentrate the brine in much the same way as does evaporation.

Pond leakage and brine capture (entrainment) in and below the pan floor are additional influences on mineralogy, regardless of brine depth or ponding area. As mentioned earlier, to precipitate bischofite and allow for MgCl2 manufacture, around ninety-eight percent of the water from present North Arm brine feed must evaporate. If pond leakage causes the level of the ponding area to drop too quickly, it becomes near impossible to reach saturation for bischofite (due to brine reflux). Control of pond leakage in the planning and construction phases is essential to assure that the precipitated salts contain the optimal quantity of the desired minerals for successful pond operation.

The opposite of leakage is brine retention in a precipitated layer; it can also alter brine chemistry and recovery economics. Brine entrained (or trapped) in the voids between salt crystals in the pond floor is effectively removed from salt production and so affects the chemistry of salts that will be precipitated as concentration proceeds and can also drive unwanted backreactions. The time required to evaporate nearly ninety percent of the water from the present north arm Great Salt Lake brine in the Ogden solar pond complex, under natural steady state conditions, is approximately eighteen months.

Summary of SOP production procedures in Great Salt Lake

Sulphate of potash cannot be obtained from the waters of the Great Salt Lake by simple solar evaporation (Behrens, 2002). As the lake water is evaporated, first halite precipitates in a relatively pure form and is harvested. By the time evaporative concentration has proceeded to the point that saturation in a potash-entraining salt occurs, most of the NaCl has precipitated. It does, however, continue to precipitate and becomes the primary contaminant in the potassium-bearing salt beds in the higher-end pans.

Brine phase chemistry from the point of potassium saturation in the evaporation series is complicated, and an array of potassium double salts are possible, depending on brine concentration, temperature and other factors. Among the variety of potash minerals precipitated in the potash harvester pans, the majority are double salts that contain atoms of both potassium and magnesium in the same molecule, They are dominated by kainite, schoenite, and carnallite. All are highly hydrated; that is, they contain high levels of water of crystallisation that must be removed during processing. SOP purification also involves removal of the considerable quantities of sodium chloride that are co-precipitated, after this the salts must be chemically converted into potassium sulphate.

Controlling the exact mineralogy of the precipitated salts and their composition mixtures is not possible in the pans, which are subject to the vagaries of climate and associated temperature variations. Many of the complex double salts precipitating in the pans are stable only under fixed physiochemical conditions, so that transitions of composition may take place in the ponds and even in the stockpile and early processing plant steps.

While weathering, draining, temperature and other factors can be controlled to a degree, it is essential that the Great Salt Lake plant be able to handle and effectively accommodate a widely variable feed mix (Behrens 2002). To do this, the plant operator has developed a basic process comprising a counter-current leach procedure for converting the potassium-bearing minerals through known mineral transition stages to a final potassium sulfate product (Figure 7). This set of processing steps is sensitive to sodium chloride content, so a supplemental flotation circuit is used to handle those harvested salts high in halite. It aims to remove the halite (in solution) and upgrade the feed stream to the point where it can be handled by the basic plant process.

Solids harvested from the potash ponds with elevated halite levels are treated with anionic flotation to remove remaining halite (Felton et al., 2010). To convert kainite into schoenite, it is necessary to mix the upgraded flotation product with a prepared brine. The conversion of schoenite to SOP at the Great Salt Lake plant requires that new MOP is added, over the amount produced from the lake brines. This additional MOP is purchased from the open market. The schoenite solids are mixed with potash in a draft tube baffle reactor to produce SOP and byproduct magnesium chloride.

The potassium sulfate processing stream defining the basic treatment process in the Great Salt Lake plant is summarised as Figure 7, whereby once obtaining the appropriate chemistry the SOP product is ultimately filtered, dried, sized and stored. Final SOP output may then be compacted, graded, and provided with additives as desired, then distributed in bulk or bagged, by rail or truck.


Lop Nur, Tarim Basin, China (SOP operation)

Sulphate of potash (SOP) via brine processing (solution mining) of lake sediments and subsequent solar concentration of brines is currently underway in the fault-bound Luobei Hollow region of the Lop Nur playa, in the southeastern part of Xinjiang Province, Western China (Liu et al., 2006; Sun et al., 2018). The recoverable sulphate of potash resource is estimated to be 36 million tonnes from lake brine (Dong et al., 2012). Lop Nur lies in the eastern part of the Taklimakan Desert (Figure 8a), China’s largest and driest desert, and is in the drainage sump of the basin, some 780 meters above sea level in a BSk climate belt. The Lop Nur depression first formed in the early Quaternary, due to the extensional collapse of the eastern Tarim Platform and is surrounded and typically in fault contact with the Kuruktagh (to the north), Bei Shan (to east) and Altun (to the south) mountains (Figure 8b).

The resulting Lop Nur (Lop Nor) sump is a large groundwater discharge playa that is the terminal point of China’s largest endorheic drainage system, the Tarim Basin, which occupies an area of more than 530,000 km2 (Ma et al., 2010). The Lop Nur sump is the hydrographic base level to local and regional groundwater and surface water flow systems, and thus collectively captures all river and subsurface flow originating in the surrounding mountainous regions. The area has been subject to ongoing Quaternary climate and water supply oscillations, which over the last few hundred years has driven concentric strandzone contractions on the playa surface, to form what is sometimes called the “Great Ear Lake" of the Lop Nur sump (Liu et al., 2016a).

Longer term widespread climate oscillations (thousands of years) drove precipitation of saline glauberite-polyhalite deposits, alternating with more humid lacustrine mudstones especially in fault defined grabens with the sump. For example, Liu et al. (2016b) conducted high-resolution multi-proxy analyses using materials from a well-dated pit section (YKD0301) in the centre of Lop Nur and south of the Luobei depression. They showed that Lop Nur experienced a progression through a brackish lake, saline lake, slightly brackish lake, saline lake, brackish lake, and playa in response to climatic changes over the past 9,000 years.

Presently, the Lop Nur playa lacks perennial long-term surface inflow and so is characterised by desiccated saline mudflats and polygonal salt crusts. The upward capillary flux from the shallow groundwater helps to maintain a high rate of evaporation in the depression and drives the formation of a metre-thick ephemeral halite crust that covers much of the depression (Liu et al., 2016a).

Historically, before construction of extensive irrigation systems in the upstream portion of the various riverine feeds to the depression and the diversion of water into the Tarim-Kongqi-Qargan canal, brackish floodwaters periodically accumulated in the Lop Nur depression. After the diversion of inflows, terminal desiccation led to the formation of the concentric shrinkage shorelines, that today outline the “Great Ear Lake” region of the Tarim Basin (Figure 8b; Huntington, 1907; Chao et al., 2009; Liu et al., 2016a).

The current climate is cool and extremely arid (Koeppen BSk); average annual rainfall is less than 20 mm and the average potential evaporation rates ≈3500 mm/yr (Ma et al., 2008, 2010). The mean annual air temperature is 11.6°C; higher temperatures occur during July (>40°C), and the lower temperatures occur during January (<20°C). Primary wind direction is northeast. The Lop Nor Basin experiences severe and frequent sandstorms; the region is well known for its wind-eroded features, including many layered yardangs along the northern, western and eastern margins of the Lop Nur salt plain (Lin et al., 2018).


Salinity and chemical composition of modern groundwater brine varies little in the ‘‘Great Ear” area and appears not to have changed significantly over the last decade (Ma et al., 2010). Dominant river inflows to the Lop Nor Basin are Na-Mg-Ca-SO4-Cl-HCO3 waters (Figure 9). In contrast, the sump region is characterised by highly concentrated groundwater brines (≈350 mg/l) that are rich in Na and Cl, poor in Ca and HCO3+CO3, and contain considerable amounts of Mg, SO4 and K, with pH ranging from 6.6 to 7.2 (Figure 9). When concentrated, the Luobei/Lop Nur pore brines is saturated with respect to halite, glauberite, thenardite, polyhalite and bloedite (Ma et al., 2010; Sun et al., 2018).

Groundwater brines, pooled in the northern sub-depression, mostly in the Luobei depression, are pumped into a series of pans to the immediate south, where sulphate of potash is produced via a set of solar concentrator pans. Brines in the Luobei depression and adjacent Xingqing and Tenglong platforms are similar in chemistry and salinity to the Great Ear Lake area but with a concentrated saline reserve due to the presence of a series of buried glauberite-rich beds (Figure 9; Hu and Wang, 2001; Ma et al., 2010; Sun et al., 2018).

K-rich mother brines in the Luobei hollow also contain significant MgSO4 levels and fill open phreatic pores in a widespread subsurface glauberite bed, with a potassium content of 1.4% (Liu et al., 2008; Sun et al., 2018). Feed brines are pumped from these evaporitic sediment hosts in the Luobei sump into a large field of concentrator pans to ultimately produce sulphate of potash (Figure 8a).

Brine chemical models, using current inflow water and groundwater brine chemistries and assuming open-system hydrology, show good agreement between theoretically predicted and observed minerals in upper parts of the Lop Nor Basin succession (Ma et al., 2010). However, such shallow sediment modelling does not explain the massive amounts of glauberite (Na2SO4.CaSO4) and polyhalite (K2SO4MgSO4.2CaSO4.2H2O) recovered in a 230 m deep core (ZK1200B well) from the Lop Nor Basin (Figure 9a).


Hydrochemical simulations assuming a closed system at depth and allowing brine reactions with previously formed minerals imply that widespread glauberite in the basin formed via back reactions between brine, gypsum and anhydrite and that polyhalite formed via a diagenetic reaction between brine and glauberite. Diagenetic textures related to recrystallisation and secondary replacement are seen in the ZK1200B core; they include gypsum-cored glauberite crystals and gypsum replacing glauberite. Such textures indicate significant mineral-brine interaction and backreaction during crystallisation of glauberite and polyhalite (Liu et al., 2008). Much of the glauberite dissolves to create characteristic mouldic porosity throughout the glauberite reservoir intervals (Figure 10, 11b)


Mineral assemblages predicted from the evaporation of Tarim river water match closely with natural assemblages and abundances and, in combination with a model that allows widespread backreactions, can explain the extensive glauberite deposits in the Lop Nor basin (Ma et al., 2008, 2010). It seems that the Tarim river inflows, not fault-controlled upwelling hydrothermal brines, were the dominant ion source throughout the lake history. The layered distribution of minerals in the more deeply cored sediments documents the evolving history of inflow water response to wet and dry periods in the Lop Nor basin. The occurrence of abundant glauberite and gypsum below 40 m depth, and the absence of halite, polyhalite and bloedite in the same sediment suggests that the brine underwent incomplete concentration in the wetter periods 10b).

In contrast, the increasing abundance of halite, polyhalite and bloedite in the top 40 m of core from the ZK1200B well indicate relatively dry periods (Figure 10a), where halite precipitated at lower evaporative concentrations (log Concentration factor = 3.15), while polyhalite and bloedite precipitated at higher evaporative concentrations (log = 3.31 and 3.48 respectively). Following deposition of the more saline minerals, the lake system once again became more humid in the later Holocene, until the anthropogenically-induced changes in the hydrology over the last few decades, driven by upstream water damming and extraction for agriculture (Ma et al., 2008). These changes have returned the sump hydrology to the more saline character that it had earlier in the Pleistocene.

The Lop Nur potash recovery plant/factory and pan system, located adjacent to the LuoBei depression (Figures 8, 11a), utilises a brine-well source aquifer where the potash brine is reservoired in intercrystalline and vuggy porosity in a thick stacked series of porous glauberite beds/aquifers.

Currently, 200 boreholes have been drilled in the Lop Nor brine field area showing the Late-Middle Pleistocene to Late Pleistocene strata are distributed as massive, continuous, thick layers of glauberite with well-developed intercrystal and mouldic porosity, forming storage space for potassium-rich brine (Figure 11b; Sun et al., 2018). However, buried faults and different rates of creation of fault-bound accommodation space, means there are differences in the brine storage capacity among the three brinefield extraction areas; termed the Luobei depression, the Xingqing platform and the Tenglong platform areas (Figures 9a, 11a).

In total, there are seven glauberitic brine beds defined by drill holes in the Luobei depression, including a phreatic aquifer, W1L, and six artesian aquifers, W2L, W3L, W4L, W5L, W6L, and W7 (Figure 10b; Sun et al., 2018). At present, only W1L, W2L, W3L, and W4L glauberite seams are used as brine sources. There are two artesian brine aquifers, W2X and W3X, exposed by drill holes in the Xinqing platform and there are three beds in the Tenglong extraction area, including a phreatic aquifer, W1T, and two artesian aquifers, W2T and W3T (Figure 10b).

W1L is a phreatic aquifer with layered distribution across the whole Luobei depression, with an average thickness of 17.54 m, water table depths of 1.7 to 2.3 m, porosities of 6.98% to 38.45%, and specific yields of 4.57% to 25.89%. Water yield is the highest in the central and northeast of the depression, with unit brine overflows of more than 5000 cubic meters per day per meter of water table depth (m3/dm). In the rest of the aquifer, the unit brine overflows range from 1000 to 5000 m3/dm (Sun et al., 2018). The W2L artesian aquifer is confined, nearly horizontal with a stratified distribution, and has an average thickness of 10.18 m, unit brine overflows of 10 to 100 m3/dm, water table depths of 20 to 40 m, porosities of 4.34% to 37.8%, and specific yields of 1.08% to 21.04%. The W3L artesian aquifer is confined, with stratified distribution and an average thickness of 8.50 m, unit brine overflows of 10 to 100 m3/dm, water table depths of 40 to 70 m, porosities of 2.85% to 19.97%, and specific yields of 1.10% to 13.37%. The W3L aquifer is also confined with stratified distribution, with an average thickness of 7.28 m, unit brine overflows of 10 to 100 m3/dm, water table depths of 70 to 100 m, porosities of 5.22% to 24.72%, and specific yields of 1.03% to 9.91%. The lithologies of the four brine storage layers are dominated by glauberite, and occasional lacustrine sedimentary clastic rocks, such as gypsum (Figure 10a).

The Xinqing platform consists of two confined potassium-bearing brine aquifers (Figure 10b). Confined brines have layered or stratified distributions. The average thicknesses of the aquifers are 4.38 to 7.52 m. Due to the F1 fault, there is no phreatic aquifer in the Xinqing platform, but this does not affect the continuity of the brine storage layer between the extraction areas. The W2X aquifer is confined, stratified, and distributed in the eastern part of this ore district with a north-south length of 77.78 km, east-west width of 16.82 km, and total area of 1100 km2. Unit brine overflows are 2.25 to 541.51 m3/dm, water table depths are 10 to 20 m, porosities are 3.89% to 40.69%, and specific yields are 2.01% to 21.15%. The W3X aquifer is also confined and stratified, with a north-south length of 76.10 km, east-west width of 18.81 km, and total area of 1444 km2. Unit brine overflows are 1.67 to 293.99 m3/d m, water table depths are 11.3 to 38 m, porosities are 4.16% to 26.43%, and specific yields are 2.11% to 14.19%23.

The Tenglong platform consists of a phreatic aquifer and two confined aquifers. W1T is a phreatic, stratified aquifer and is the main ore body, and is bound by the F3 fault (Figure 10b). It is distributed across the northern part of the Tenglong extraction area, with a north-south length of about 33 km, east-west width of about 20 km, and total area of 610 km2. Water table depths are 3.26 to 4.6 m, porosities are 2.03% to 38.81%, and specific yields are 22.48% to 1.22%. On the other side of the F3 fault, in the southern part of the mining area, is the W2T confined aquifer (Figure 10b). Water table depths are 16.91 to 22 m, porosities are 3.58% to 37.64%, and specific yields are 1.35% to 18.69%. W3T is also a confined aquifer, with a stratified orebody distributed in the southern part of the mining area, with a north-south length of about 29 km, east-west width of about 21 km, and total area of 546 km2. Water table depths are 17.13 to 47 m, porosities are 2.69% to 38.71%, and specific yields are 1.26% to 17.64%.

Lop Nur is an unusual potash source

The glauberite-hosted brinefield in the Luobei depression and the adjacent platforms makes the Lop Nur SOP system unique in that it is the world's first large-scale example of brine commercialisation for potash recovery in a Quaternary continental playa aquifer system with a non-MOP brinefield target. Elsewhere, such as in the Dead Sea and the Qarhan sump, Salar de Atacama and the Bonneville salt flats, the brines derived from Quaternary lacustrine beds and water bodies are concentrated via solar evaporation in semi-arid desert scenarios. Potash plants utilising these Quaternary evaporite-hosted lacustrine brine systems do not target potassium sulphate, but process either carnallitite or sylvinite into a commercial MOP product

 Glauberite is found in a range of other continental Quaternary evaporite deposits around the world but, as yet,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       outside of Lop Nur is not economically exploited to produce sulphate of potash. For example, glauberite is a significant component in Quaternary cryogenic beds in Karabogazgol on the eastern shore of the Caspian Sea, in Quaternary evaporite beds in Laguna del Rey in Mexico, in saline lacustrine beds in the Miocene of Spain and Turkey, and in pedogenic beds in hyperarid nitrate-rich soils of the Atacama Desert of South America (Warren, 2016; Chapter 12).

In most cases, the deposits are commercially exploited as a source of sodium sulphate (salt cake). In a saline Quaternary lake in Canada, SOP is produced by processing saline lake waters. This takes place in Quill Lake, where small volumes of SOP are produced via mixing a sylvite feed (trucked into the site) with a cryogenic NaSO4 lake brine.

The Lop Nur deposit is mined by the SDIC Xinjiang Luobupo Hoevellite Co. Ltd, and the main product is potassium sulfate, with a current annual production capacity of 1.3 million tons. Pan construction began in 2000, and the plant moved in full -cale operation in 2004 when it produced ≈50,000 tons. The parent company, State Development and Investment Corporation (SDIC), is China’s largest state-owned investment holding company. The company estimates a potash reserve ≈ 12.2 billion tons in the sump. This makes Lop Nur deposit the largest SOP facility in the world, and it is now a significant supplier of high premium fertiliser to the Chinese domestic market.

Implications

A study of a few of the Quaternary pans worldwide manufacturing economic levels of potash via solar evaporation shows tha,t independent of whether SOP or MOP salts are the main product, all retain abundant evidence that salt precipitates continue to evolve as the temperature and the encasing brine chemistry change. As we shall see in many ancient examples discussed in the next article, ongoing postdepositional mineralogical alteration dominates the textural and mineralogical story in most ancient potash deposits.

As we saw in the previous article, which focused on MOP in solar concentrator plants with brine feeds from Quaternary saline lakes, SOP production from brine feeds in Quaternary saline lakes is also related strongly to cooler desert climates (Figure 12). The Koeppen climate at Lop Nur is cool arid desert (BWk), while the Great Salt Lake straddles cool arid steppe desert and a temperate climate zone, with hot dry summer zones (BSk and Csa)


Outside of these two examples, there are a number of other Quaternary potash mineral occurrences with the potential for SOP production, if a suitable brine processing stream can be devised (Warren, 2010, 2016). These sites include intermontane depressions in the high Andes in what is a high altitude polar tundra setting (Koeppen ET), none of which are commercial (Figure 12b).

Similarly, there a number of non-commercial potash (SOP) mineral and brine occurrences in various hot arid desert regions in Australia, northern Africa and the Middle East (Koeppen BWh). Today, SOP in Salar de Atacama is currently produced as a byproduct of lithium carbonate production, along with MOP, as discussed in the previous article in this series.

As for MOP, climatically, commercial potash brine SOP systems are hosted in Quaternary-age lacustrine sediments are located in cooler endorheic intermontane depressions (BWk, BSk). The association with somewhat cooler desert and less arid cool steppe climates underlines the need for greater volumes of brine to reside in the landscape in order to facilitate the production of significant volumes of potash bittern.

Put simply, in the case of both MOP and SOP production in Quaternary settings, hot arid continental deserts simply do not have enough flowable water to produce economic volumes of a chemically-suitable mother brine. That is, currently economic Quaternary MOP and SOP operations produce by pumping nonmarine pore or saline lake brines into a set of concentrator pans. Mother waters reside in hypersaline perennial lakes in steep-sided valleys or in pores in salt-entraining aquifers with dissolving salt compositions supplying  a suitable ionic proportions in the mother brine. In terms of annual volume of product sold into the world market, Quaternary brine systems supply less than 15% The remainder comes from the mining of a variety of ancient solid-state potash sources. In the third and final article in this series, we shall discuss how and why the chemistry and hydrogeology of these ancient potash sources is mostly marine-fed and somewhat different from the continental hydrologies addressed so far.

References

Behrens, P., 2002, Industrial processing of Great Salt lake Brines by Great Salt Lake Minerals and Chemical Corporation, in D. T. Gywnne, ed., Great Salt Lake: A scientific, historical and economic overview, Utah Geological and Mineral Survey, Bulletin 116, p. 223-228.

Bingham, C. P., 1980, Solar production of potash from brines of the Bonneville Salt Flats, in J. W. Gwynn, ed., Great Salt Lake; a scientific, history and economic overview. , v. 116, Bulletin Utah Geological and Mineral Survey, p. 229-242.

Butts, D., 2002, Chemistry of Great Salt Lake Brines in Solar Ponds, in D. T. Gywnne, ed., Great Salt Lake: A scientific, historical and economic overview, Utah Geological and Mineral Survey, Bulletin 116, p. 170-174.

Butts, D., 2007, Chemicals from Brines, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., p. 784-803.

Chao, L., P. Zicheng, Y. Dong, L. Weiguo, Z. Zhaofeng, H. Jianfeng, and C. Chenlin, 2009, A lacustrine record from Lop Nur, Xinjiang, China: Implications for paleoclimate change during Late Pleistocene: Journal of Asian Earth Sciences, v. 34, p. 38-45.

Dong, Z., P. Lv, G. Qian, X. Xia, Y. Zhao, and G. Mu, 2012, Research progress in China's Lop Nur: Earth-Science Reviews, v. 111, p. 142-153.

Felton, D., J. Waters, R. Moritz, D., and T. A. Lane, 2010, Producing Sulfate of Potash from Polyhalite with Cost Estimates, Gustavson Associates, p. 19.

Hu, G., and N.-a. Wang, 2001, The sand wedge and mirabilite of the last ice age and their paleoclimatic significance in Hexi Corridor: Chinese Geographical Science, v. 11, p. 80-86.

Huntington, E., 1907, Lop-Nor. A Chinese Lake. Part 1. The Unexplored Salt Desert of Lop: Bulletin of the American Geographical Society, v. 39, p. 65-77.

Jones, B., D. Naftz, R. Spencer, and C. Oviatt, 2009, Geochemical Evolution of Great Salt Lake, Utah, USA: Aquatic Geochemistry, v. 15, p. 95-121.

Lin, Y., L. Xu, and G. Mu, 2018, Differential erosion and the formation of layered yardangs in the Loulan region (Lop Nur), eastern Tarim Basin: Aeolian Research, v. 30, p. 41-47.

Liu, C., W. Mili, J. Pengcheng, L. I. Shude, and C. Yongzhi, 2006, Features and Formation Mechanism of Faults and Potash-forming Effect in the Lop Nur Salt Lake, Xinjiang, China: Acta Geologica Sinica - English Edition, v. 80, p. 936-943.

Liu, C.-A., H. Gong, Y. Shao, Z. Yang, L. Liu, and Y. Geng, 2016a, Recognition of salt crust types by means of PolSAR to reflect the fluctuation processes of an ancient lake in Lop Nur: Remote Sensing of Environment, v. 175, p. 148-157.

Liu, C. L., M. L. Wang, P. C. Jiao, W. D. Fan, Y. Z. Chen, Z. C. Yang, and J. G. Wang, 2008, Sedimentary characteristics and origin of polyhalite in Lop Nur Salt Lake,Xinjiang: Mineral Deposits.

Liu, C. L., J. F. Zhang, P. C. Jiao, and S. Mischke, 2016b, The Holocene history of Lop Nur and its palaeoclimate implications: Quaternary Science Reviews, v. 148, p. 163-175.

Ma, C., F. Wang, Q. Cao, X. Xia, S. Li, and X. Li, 2008, Climate and environment reconstruction during the Medieval Warm Period in Lop Nur of Xinjiang, China: Chinese Science Bulletin, v. 53, p. 3016-3027.

Ma, L., T. K. Lowenstein, B. Li, P. Jiang, C. Liu, J. Zhong, J. Sheng, H. Qiu, and H. Wu, 2010, Hydrochemical characteristics and brine evolution paths of Lop Nor Basin, Xinjiang Province, Western China: Applied Geochemistry, v. 25, p. 1770-1782.

Spencer, R. J., H. P. Eugster, and B. F. Jones, 1985b, Geochemistry of Great Salt Lake, Utah II: Pleistocene-Holocene evolution: Geochimica et Cosmochimica Acta, v. 49, p. 739-747.

Spencer, R. J., H. P. Eugster, B. F. Jones, and S. L. Rettig, 1985a, Geochemistry of Great Salt Lake, Utah I: Hydrochemistry since 1850: Geochimica et Cosmochimica Acta, v. 49, p. 727-737.

Sun, M.-g., and L.-c. Ma, 2018, Potassium-rich brine deposit in Lop Nor basin, Xinjiang, China: Scientific Reports, v. 8, p. 7676.

Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217-268.

Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

 

Evaporites and climate: Part 2 of 2 - Ancient evaporites

John Warren - Saturday, February 25, 2017

Introduction

Evaporites, along with coal and bauxites, are sediments considered to be climate sensitive. Ancient evaporite distribution and associated paleolatitudes are used to reconstruct the distribution of the world's arid belts across time. As we saw in Part 1 (Salty Matters, Tuesday, January 31, 2017), thick, widespread evaporite deposit are essentially a result of the atmospheric circulation of the Hadley cells. That is, locations of subtropical dry zones and tropical/subtropical deserts of the globe are mostly determined by the positions of subsiding branches of cool, dry descending air in a Hadley cells (aka Trade Wind Belt; Lu et al., 2007; Crowley and North, 1991) within low-lying regions tied a sufficient supply of mother brine. Thus, climate plus ongoing brine supply are the underlying factors controlling locales of significant evaporite deposition (Ziegler et al., 1981). The previous article focused on regional and local climatic controls across the Quaternary (Salty Matters, Tuesday, January 31, 2017). This article extends the time frame for the evaporite/climate association across the Phanerozoic and into the Precambrian.


As we move back in time, we move out of an icehouse-dominated world climate, with permanent ice caps waxing and waning at the world's poles, into greenhouse-dominant world climates. In greenhouse times there are no permanent polar ice sheet and glaciers occurred only in some high-altitude mountainous belts (Figure 1a, b). The transition into greenhouse climate changes the dominant 4th-order eustatic style from 100m amplitude changes every 100,000 years or so into 4th-order responses with much lower 3-5 m amplitude oscillations every 100,000 years (Figure 2a, b). Lack of polar caps raises world sealevel on the order of 40-50 metres. Thus, even without tectonic considerations, there is less continental freeboard in greenhouse times and increased the potential for significant cratonic coverage by epicontinental and pericontinental seaways (Warren, 2016; Chapter 5).


Looking back in time, beyond the last few million years of the Quaternary, means our conceptual models must encompass a broader range of tectonic settings as well as changes in the rates of seafloor spreading, supercontinents, and times of significant igneous outpourings (superplumes). All these additional world-scale variables across a longer set of available time explain the greater range of climate potentials on the earth, compared to anything that has occurred in the time-limited base seen in icehouse-dominant Quaternary climate spreads. The last few million years of the current icehouse mode is inhabited by the human species or its primate ancestors. The previous Icehouse dominant mode was in the Carboniferous-Mid Permian when the dominant land animals were amphibians and primitive reptiles.
One the first questions this broader ancient climate spectrum, tied to evaporites over deep time, offers up is; "How do the positions of Hadley cells vary across geological time frames?" In part 1, we saw how the rise of the Himalayas deflected a belt of cool, dry descending air much further south toward the Equator. Moving back in time creates a broader scaffolding for documenting climate variation, in part driven by the rise and fall of mountain ranges, but also influenced by increases in the rate of seafloor spreading driving ocean basin shallowing and by changes in atmospheric/seawater compositions and temperatures.


Hadley cells and latitudinal variability over time
According to Chen Xu et al., 2013 and Boucot et al., 2013, much of the world-scale Phanerozoic distribution of significant bedded evaporite accumulations indicates the ongoing presence of two mid-latitude arid belts, presumably situated beneath Hadley Cells. There are exceptions in locales generated in local rain shadows with orographic control provided by neighbouring mountain ranges. However, in the later Permian, through the Triassic, and much of the Jurassic the two formerly mid-latitude Hadley Cells merged over the more central Pangaeanic regions of Africa, Europe and the adjacent Americas, to form an arid belt that also encompassed low-latitude, equatorial arid regions (Figure 3). Across the continental interior of the Pangean supercontinent, this arid to hyperarid equatorial belt in the supercontinent interior prevented the formation of climate-sensitive sediments that are more typical of humid equatorial conditions that deposit coals, kaolinites, lateritic materials and bauxites. However, in this same time interval, these more humid sediment products are typically present at low latitudes of these time slices adjacent to the Panthalassic ocean.
That is, in the absence of an equator-spanning supercontinent, low latitudes, typically imply humid and non-seasonal tropical conditions throughout much of the Phanerozoic, as we see today. But the assembly of the Pangaean supercontinent disrupted this latitudinally-zoned atmospheric circulation, replacing it with a progressively more monsoonal (seasonal) circulation and more arid, at times hyperarid, conditions in the equatorial continental interior of Pangaea (Parrish, 1993). The Pangean supercontinent reached its maximum areal extent in the Triassic and was associated with what is known as the Pangaean Megamonsoon. There were immense arid regions across the interior regions of the supercontinent that were nearly uninhabitable, with scorching days and frigid nights. However, Panthalassian coasts still experienced seasonality, transitioning from rainy weather in the summer to dry conditions during the winter and the associated accumulation of humid sediments (Figure 3b' Boucot et al., 2013). Megamonsoon aridity is evidenced not just in the accumulation of low-latitude bedded evaporite deposits. Low latitude continental aridity also drove the accumulation of thick, widespread low-latitude desert redbeds, sourced by eolian, not fluvial, detrital transport (Sweet at al., 2013) and the precipitation of bedded salt crusts in ephemeral saline lakes under exceptionally-high surface temperatures of up to 73°C (Zambito and Benison, 2013).
Paleolatitude reconstructions Chen-Xu et al. (2013) show these continental interior arid belts in low latitude tropical-subtropical regions persisted from the Permian to the Early Cretaceous. Reunion of the humid regions from both sides of Pangaea by the early Late Cretaceous formed a through-going low latitude humid tropical-subtropical belt. This coincides with the disaggregation of Pangaean supercontinent, as the initial stages of a modern latitudinal climate belt distribution pattern emerged, tied to latitudinally-restricted evaporites that continue to the present (Figure 4).


Tectonism and eustacy in arid climates drive the formation of mega-evaporite basins
Within this Phanerozoic climatic framework, there are times when significant volumes of evaporites form what are know as saline giants, or megahalite/megasulphates deposits. These massive accumulations of salts formed beneath arid climates that can span both greenhouse and icehouse climates (Figure 1; Warren, 2010, 2016). Ancient marine saline giants (megahalites and megasulphates) accrued in either of two plate-scale settings, which at times merged into one another, namely; 1) Platform evaporites (Figure 5) and, 2) Basinwide evaporites (Figure 6).

The first major contrast with nonmarine continental dominance in Quaternary evaporite settings is the fact that platform evaporites require greenhouse eustasy a and a marine feed, the second is that basinwide evaporites require tectonically- and hydrographically-isolated widespread subsealevel depressions, typically found along plate edges with continent-continent proximity in regions with a marine seepage feed and/or periodic marine overflows (Figure 6). Neither platform or basinwide conditions are present on the current earth surface. For basinwides, suitable hydrologic conditions were last present during the Messinian Salinity Crisis in the Mediterranean region, and platform evaporite settings were last present on earth across large parts of the Middle East carbonate platform during the Eocene (Tables 1, 2). There is a third group of ancient evaporite deposits; it encompasses all nonmarine lacustrine beds past and present (Table 3). This group has same-scale modern-ancient counterparts, unlike ancient marine platform and basinwide evaporites (Warren, 2010, 2016). Interestingly, the lacustrine depositional style for bedded salt accumulation dominates in the icehouse climate that is the Quaternary, and so biases a strictly uniformitarian view of the past with respect to the relative proportions of nonmarine versus marine evaporite volumes (see Part 1; Salty Matters, Tuesday, January 31, 2017).


Platform evaporites
Are made up of stratiform beds, usually <50 m thick and composed of stacked <1 to 5 m thick parasequences or evaporite cycles, with a variably-present restricted-marine carbonate unit at a cycle base (Table 1). Salts were deposited as mixed evaporitic mudflat and saltern evaporites, sometimes with local accumulations of bittern salts. Typically, platform salts were deposited in laterally extensive (>50-100 km wide), hydrographically-isolated, subsealevel marine-seepage lagoons (salterns) and evaporitic mudflats (sabkhas and salinas). These regions have no same-scale modern counterparts and extended as widespread depositional sheets across large portions of hydrographically isolated marine platform areas that passed seaward across a subaerial seepage barrier into open marine sediments (Figure 5). In marine margin epeiric settings, such as the Jurassic Arab/Hith and Permian Khuff cycles of the Middle East or the Cretaceous Ferry Lake Anhydrite in the Gulf of Mexico, these platform evaporites are intercalated with shoalwater marine-influenced carbonate shelf/ramp sediments, which in turn pass basinward across a subaerial sill into open marine carbonates. Landward they pass into arid zone continental siliciclastics or carbonate mudflats.

 

Platform evaporite deposition occurred in both pericontinental and epicontinental settings, at times of low-amplitude 4th and 5th order sealevel changes, which typify greenhouse eustasy (Figure 5; Warren, 2010). Platform evaporites also typify the saline stages of some intracratonic basins. Platform evaporites cannot form in the high-amplitude, high-frequency sealevel changes of Icehouse eustasy. The 100m+ amplitude oscillations of Icehouse times mean sealevel falls off the shelf edge every 100,000 years, so any evaporite that had formed on the platform is subaerially exposed and leached. Fourth order high-amplitude icehouse eustatic cycles also tend to prevent laterally-continuous carbonate sediment barriers forming at the top of the shelf to slope break, and so icehouse evaporite systems tend not to be hydro-graphically isolated (drawdown) at the platform scale. Rather icehouse eustasy favours nonmarine evaporites as the dominant style, along with small ephemeral marine-margin salt bodies, as seen today in the bedded Holocene halites and gypsums of Lake Macleod in coastal West Australia (Part 1; Salty Matters, Tuesday, January 31, 2017).
Ancient platform evaporite successions may contain halite beds, especially in intracratonic basinwide settings, but periplatform settings, outside of intracratonic basins, are typically dominated by 5–40 m thick Ca-sulphate beds intercalated with normal-marine platform carbonates (Table 1). The lateral extent of these epeiric platform sulphate bodies, like the Middle Anhydrite Member of the Permian Khuff Fm. of Saudi Arabia and the UAE, with a current area of more than 1,206,700 sq. km., constitute some of the most aerially-extensive evaporite beds ever deposited.


Basinwide evaporites
Are made up of thick evaporite units >50–100 m thick made up of varying combinations of deepwater and shallow water evaporites (Figure 1; Table 2). They retain textural evidence of different but synchronous local depositional settings, including mudflat, saltern, slope and basin (Figure 6). When basinwide evaporite deposition occurs, the whole basin hydrology is evaporitic, holomictic, and typically saturated with the same mineral phase across vast areas of the basin floor, as seen on a much smaller scale today in the Dead Sea basin. The Dead Sea currently has halite forming simultaneously as; 1) decimeter-thick chevron-dominated beds on the saline-pan floor of the shallow parts around the basin edge in waters typically less than 1-10 metres deep, and 2) as coarse inclusion-poor crystal meshworks of halite on the deep basin floor that sits below a halite-saturated brine column up to hundreds of metres deep. Ancient basinwide successions are usually dominated by thick massive salt beds, generally more than 100-500 m thick. Deposits are made up of stacked thick halite beds, but can also contain substantial volumes of thick-bedded Ca-sulphate and evaporitic carbonate, as in the intracratonic basinwide accumulations of the Delaware and Otto Fiord Ba-sins (Table 2).
Owing to inherent purity and thickness of the deposited halite, many halite-dominant basinwide beds are also remobilized, via loading or tectonics, into various halokinetic geometries (Hudec and Jackson, 2007). Some basinwide systems (mostly marine-fed intracratonic settings) entrain significant accumulations of marine-fed potash salts, as in the Devonian Prairie Evaporite of western Canada. In contrast, all Quaternary examples of commercial potash deposits are accumulating in continental lacustrine systems (Warren 2016; Chapter 11).

 

Basinwide evaporite deposits are the result of a combination of tectonic and hydrological circumstances that are not currently active on the world’s surface (Figure 1). They were last active in the Late Miocene (Messinian), in association with soft-suture collision basins tied to the Alpine-Himalaya orogenic belt, and in Middle Miocene (Badenian) basins developed in the early rift stages of the Red Sea. Basinwide systems will be active again in the future at sites and times of appropriate plate-plate interaction, when two continental plate edges are nearby, and the intervening seafloor is in or near a plate-edge rift or suture and is both subsealevel and hydrographically isolated (Figure 6). Unlike most platform evaporites, basinwides do not require greenhouse eustacy, only the appropriate association of arid climate and tectonics. The latter sets up a deep hydrographically-isolated subsealevel tectonic depression with a geohydrology that can draw on a huge reserve of marine mother brine in the nearby ocean. For this reason, saline giants tend to form at times of plate-scale continent-continent proximity and so occur mostly in craton-margin settings.

 

Lacustrine (nonmarine) evaporites
Quaternary continental playa/lacustrine are constructed of stratiform salt units, with the greater volume of saline sediment accumulating in lower, more-saline portions of the lacustrine landscape. Beds are usually dominated by nodular gypsum and displacive halite, deposited in extensive evaporitic mudflats and saltpans with textures heavily overprinted by capillary wicking, rather than as bedded bottom-nucleated layers on the subaqueous floors of perennial brine lakes (Ruch et al., 2012). In ancient counterparts, the total saline lacustrine thickness ranged from meters to hundreds of meters, with lateral extents measured in tens to hundreds of kilometres (Table 3). Lacustrine salt beds are separated vertically, and usually surrounded by, deposits of lacustrine muds, alluvial fans, ephemeral streams, sheet floods, eolian sands, and redbeds. As today, ancient lacustrine salts accumulated in endorheic or highly restricted discharge basins, with perennial saline water masses tending to occur in the drainage sumps of steep-sided drainage basins (Warren, 2010, 2016). Saline lake basins accumulating gypsum, or more saline salts like halite or glauberite, typically have a shallow water table in peripheral saline mudflat areas and so are dominated by continental sabkha textures. Nearby is the lowermost part of the lacustrine depression or sump where deposition is typified by ephemeral ponded brine pan deposits, rather than permanent saline waters.
Saline lacustrine mineralogies depend on compositions of inflowing waters, so depositional sumps in regions with non-marine ionic proportions in the feeder inflow, accumulate thick sequences of nonmarine bedded salts dominated by trona, glauberite, and thenardite. In contrast, nonmarine areas with thalassic (seawater-like) inflows tend to accumulate more typical sequences of halite, gypsum, and anhydrite.
Across the Pliocene-Quaternary icehouse, less-saline perennial saline-lake beds tend to occur during more humid climate periods in the same continental-lacustrine depressions where saline-pan beds form (e.g., Lake Magadi, Great Salt Lake, Lake Urmia). On a smaller scale, in some modern saline lake basins, parts of the lake floor can be permanently located below the water surface (Northern Basin in the Dead Sea or Lake Asal). In some modern saline sumps dominated by mudflats, a perennial saline lake water mass is located toward the edge of a more central salt-flat zone, forming a perennial water filled “moat” facies surrounding a seasonally desiccated saline pan (as in Salar, de Atacama, Salar de Uyuni, Lake Magadi, Lake Natron). These permanent to near-permanent saline water “moat” regions are typically created where fresher inflows encounter saltier beds of the lake centre, dissolve them, and so form water-filled peripheral depressions. Bottom sediment in the moats tends to be mesohaline carbonate laminites, which can contain TOC levels as high as 12%.
High-water stage perennial saline lacustrine sediments tend to be carbonate-rich or silica-rich (diatomaceous) laminites. Ancient examples of large saline lacustrine deposits made up of alternating humid and desiccated lacustrine units include the Eocene Green River Formation of Wyoming and the Permian Pingdiquan Formation of the Junggar Basin, China (Table 4). Evaporites deposited in a suprasealevel lacustrine basin (especially Neogene deposits) have numerous same-scale Quaternary analogues, unlike the more voluminous ancient marine platform and basinwide evaporites (Figure 7). Clearly, across the Quaternary, saline continent lacustrine settings possess areas of bedded salt accumulation that are far greater than those of any contemporaneous marine-fed salt sumps (Part 1; Salty Matters, Tuesday, January 31, 2017). But in ancient climes, especially during in the continental interior of the Pangean supercontinent (mid Permian to Triassic), regions of continental interior sabkhas and saline pans had areas far greater than any seen in Quaternary continental saline sumps (Zambia and Benison, 2013).


Is the present-day climate the key to evaporite understanding?
This short answer is yes, Hadley Cells across the Phanerozoic are mostly tied to climate belts that maintain sub-tropical positions, but to this notion, we must add a geological context. Today we are living in an icehouse climate mode and have been for the last 12 Ma. It is tied to the presence of polar ice-sheets that wax and wane over 100,000-year time frames, so moving the position of the Hadley cells and changing the intensity of atmospheric circulation. In this icehouse climate, large eustatically-controlled marine-fed evaporite deposits are not preserved, as sea level falls off the continental shelf every 100,000 years or so. The world's largest bedded salt deposits formed sometime in the last 2 million years, are found in continental interiors, typically in endorheic tectonic sumps in either hot arid or steppe climate settings, often with salt diapirs outcropping or subcropping in the drainage basin and the basin floor can be located at elevations well above sealevel (Part 1; Salty Matters, Tuesday, January 31, 2017).
As we move back into much of Phanerozoic time, we see world climates dominated by greenhouse modes, with shorter episodes of polar ice-sheets and icehouse climates in the Carboniferous-Early Permian ≈ 50 million years long, and the Ordovician, some 15 million years long (Figure 1). Greenhouse climate lacks permanent polar ice sheets, so sea-levels are higher, and 4th-order eustatic amplitudes in sea level are much less (a few meters versus hundred meters plus changes). Greenhouse sets up epeiric and intercontinental seaways that when hydrographically isolated, but still marine-fed, can deposit huge areas of platform evaporites centred in isolated seepage-fed sub-sealevel sumps. These platform deposits can also form outside of Greenhouse times in marine-fed tectonically-induced intracratonic sumps.
Basinwide evaporite deposits span icehouse and greenhouse mode arid belts, whenever a marine-fed subsealevel tectonic sump forms at positions of continent-continental proximity in an arid belt. Across much of the Phanerozoic, basinwide deposits typically accumulated beneath subtropical belts of cool, dry descending air set up in a Hadley cell, and so are located north and south of a tropical equatorial belt. But the accretion of the Pangaean supercontinent (Carboniferous to Jurassic) set up conditions of continentality and orographic shadowing that allowed an arid saline belt to span the hyperarid interior of the supercontinent.
 
References

Boucot, A., Chen-Xu, and C. Scotese, 2013, Phanerozoic Paleoclimate: An Atlas of Lithologic Indicators of Climate: Concepts in Sedimentology and Paleontology, v. 11: Tulsa, OK, SEPM, 32 p.

Chen-Xu, A. J. Boucot, C. R. Scotese, F. Junxuan, W. Yuan, and Z. Xiujuan, 2012, Pangaean aggregation and disaggregation with evidence from global climate belts: Journal of Palaeogeography, v. 1, p. 5-13.

Crowley, T. J., and G. R. North, 1991, Paleoclimatology: New York, Oxford University Press, 339 p.

Hudec, M. R., and M. P. A. Jackson, 2007, Terra infirma: Understanding salt tectonics: Earth-Science Reviews, v. 82, p. 1-28.

Lu, J., G. A. Vecchi, and T. Reichler, 2007, Expansion of the Hadley cell under global warming: Geophysical Research Letters, v. 34.

Parrish, J. T., 1993, Climate of the Supercontinent Pangea: Journal of Geology, v. 10.

Ruch, J., J. K. Warren, F. Risacher, T. R. Walter, and R. Lanari, 2012, Salt lake deformation detected from space: Earth and Planetary Science Letters, v. 331-332, p. 120-127.

Sweet, A. C., G. S. Soreghan, D. E. Sweet, M. J. Soreghan, and A. S. Madden, 2013, Permian dust in Oklahoma: Source and origin for Middle Permian (Flowerpot-Blaine) redbeds in Western Tropical Pangaea: Sedimentary Geology, v. 284–285, p. 181-196.

Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217-268.

Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

Zambito, J. J., and K. C. Benison, 2013, Extremely high temperatures and paleoclimate trends recorded in Permian ephemeral lake halite: Geology, v. 41, p. 587-590.

Ziegler, A. M., S. F. Barrett, C. R. Scotese, and B. W. Sellwood, 1981, Palaeoclimate, Sedimentation and Continental Accretion [and Discussion]: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 301, p. 253-264.


 

 

Evaporites and climate: Part 1 of 2 - Are modern deserts the key?

John Warren - Tuesday, January 31, 2017

Salt deposits and deserts

Much of the geological literature presumes that thick sequences of bedded Phanerozoic evaporites accumulated in hot arid zones tied to the distribution of the world’s deserts beneath regions of descending air within Hadley Cells in a latitudinal belt that is typically located 15 to 45 degrees north or south of the equator (Figure 1a: Gordon, 1975). As this sinking cool air mass approaches the landsurface beneath the descending arm of a Hadley Cell it warms, and so its moisture-carrying capacity increases. The next two articles will discuss the validity of this assumption of evaporites tying to hot arid desert belts in the trade wind belts, first, by a consideration of actual Quaternary evaporite distributions as plotted in a GIS database with modern climate overlays, then in the second article via a look at ancient salt/climate distributions.

Significant volumes of Quaternary evaporite salts are normally interpreted as being allied to the distribution of the world’s hot arid deserts (Figure 1b). In a general way this is true, but, as Warren (2010) shows, the correlation is an oversimplification. A hot arid desert does not necessarily equate to occurrences of laterally extensive bedded evaporites; there must also be a significant long-term brine inflow to the evaporative sump, incoming waters may be meteoric, marine, a hybrid and perhaps the sump is fed brines coming from dissolution of earlier formed salts in the drainage basin, including diapiric salt (Table 1; Warren, 2016).


Actually, there are different ways of defining a desert and by implication its associated evaporites. One accepted approach is to define desert as a terrestrial area receiving less that 250 mm (10 inches) of annual precipitation. Using this definition some 26.2% of the world’s landsurface is desert (Figure 1b). But, in terms of evaporite distribution and the economics of the associated salts, this climatic generalization related to annual rainfall conceals three significant hydrological truisms. All three need to be met in order to accumulate thick sequences of bedded salts (Warren, 2010): 1) For any substantial volume of evaporite to precipitate and be preserved, there must be a sufficient volume of cations and anions in the inflow waters to allow thick sequences of salts to form; 2) The depositional setting and its climate must be located within a longer term basin hydrology that favours preservation of the bedded salt, so the accumulating salt mass can pass into the burial realm; 3) There must be a negative water balance in the basin with the potential for more water to leave the local hydrological sump than enter. When using a rainfall (precipitation) based definition of desert, the significance of these three simple hydrological axioms and the consequences, as to where bedded evaporites accumulate, is lost in the generalization that “evaporites form in the world’s deserts.”


Continental-interior evaporites

In an evaporite context it is better to define and plot saline hydrologies within a climatic framework where deserts are given the same hydrological consideration that is required for evaporite salts to form. That is, a desert is an area of land where annual precipitation (inflow) is less than potential evapotranspiration (outflow). This definition of a desert is the one used by Köppen (1900). With slight modification, his climatological scheme is still in widespread use to breakout the various climatic zones across the world’s landsurface (Kottek et al., 2006). Using a Köppen climate base, figure 2 plots worldwide occurrences of modern saline depositional systems with areas greater than 250 km2. Table 1 compares characteristics of some of the larger Quaternary bedded evaporite settings in marine edge and continental interiors. These regions contain evaporite salts accumulating in saline soils, sabkhas, salinas, saline lakes, playas and salt flats, with textural forms ranging from; isolated crystals and nodules in a terrigenous matrix, to salt crusts, to stacked beds of salts that can be more than 10 metres thick. The majority of the plotted saline areas are in arid regions, as defined by Köppen (Zone B), but not all such areas of widespread salts are in deserts (as defined by Köppen) and not all are in hot climates.


The range of large (>250 km2) saline systems in the world’s arid landscape is more climatically diverse than just evaporite occurrences within a hot arid desert (BWh), although such associations do constitute some 38% of saline occurrences (Figure 3a; Warren, 2010; 2016). Cold arid deserts (BWk) host 23% of large saline occurrences, making a combined total of 61% for large evaporite accumulation (area >250 km2) occurrences in modern arid deserts (BW group), while the arid steppes (BSh and BSk) host another 22%. In total the world’s arid climatic zones host 83% of today’s larger evaporite occurrences (Figure 3b).


This leaves another substantial, but not widely recognized, climate zone where significant volumes of Quaternary evaporites can accumulate, this is the polar tundra (ET); an environment where some 11% of large evaporite areas occur. In terms of evaporite volumes, the polar tundra (ET) is typically an arid high altitude belt, mostly in the Horse Latitude (Trade Wind) belts, and not located in polar or near-polar higher latitudes. The lakes and saline pans of the high plateaus of the Andes (Altiplano) and the Himalayas (Tibetan Plateau) typify this style of tundra (ET) evaporite. Water may be commonplace in the ET zone, but is there mostly as ice, and cryogenic salts are commonplace (see Salty Matters, Feb 24, 2015). The remaining region where significant evaporite volumes are found, some 6% of the total of large saline occurrences is a group of deposits defined by continental interior snow climates (group D), some with hot dry summers with solar evaporites alternating with dry winters favouring the possible accumulation of cryogenic salts (e.g. Great Salt Lake, USA).


In the Northern Hemisphere the occurrence of large evaporite systems within arid deserts and steppe climates (BW and BS settings) extends much further south toward the equator and much further poleward (from 5-55°N) than the narrower range of large evaporite occurrences and associated climates in the southern hemisphere (Figure 4). This hemispheric asymmetry in evaporite occurrence is mostly a response to world-scale adiabatic effects associated with the collision of India with Eurasia and growth of the Himalayas. Today, a Cainozoic mountain range, centred on the Himalyas, diverts world-scale atmospheric air flows from the more north-south trajectory, usually associated with Hadley Cell circulation. For example, the Kunlun Mountains, first formed some 5.3 Ma, prevents moisture from the Indian Monsoon reaching much of the adjacent Tibet Plateau. Its adiabatic rain shadow creates the Taklamakan desert, the second largest active sand desert in the world (BWk).

The uplift of the Himalayas also creates a dry easterly jet stream, moving arid cool air across the Tibet Plateau, around the northern side of the Himalayas, and then equatorward across the Arabian Peninsula toward Somalia where it descends and gains heat. That is, this stream of cool southwesterly-flowing dry air warms as it moves across the Eastern Mediterranean land areas and so heightens existing aridity. This helps create an adiabatic desert zone that today ranges across Arabia and northern Africa almost to the Equator (Figures 5).


In the southern hemisphere, the uplift of the Andes has formed high intermontane depressions and the allied adiabatic aridity that are cooler with lower evaporation rates and higher relied in the immediate basin compared to groundwater depressions in flatter lower-elevation continental interior deserts like the Sahara. This higher stability hydrology favours salars over dry mudflats, as typified by Salar de Atacama and Salar de Uyuni. Atacama has a Quaternary saline sediment fill made up of a more than 900 m thickness of interlayered salt and clay, while Uyuni holds a more than 120 m thick interval of interbedded salt and clay infill, with areas of 3,064 km2 and 9,654 km2 and elevations of 2250 m and 3650 m, respectively (Figure 7a). These salars are the two largest known examples of Quaternary bedded halite accumulation, worldwide. Yet neither resides in hot arid desert settings (BWh); both are located in cold arid deserts (BWk) and in actively subsiding, high altitude (>2500m) intermontane (high relief) endorheic depressions.


Worldwide, distribution of most of the larger (>250 km2) Quaternary evaporite settings located in hot arid (BWh) desert settings, tie either to; 1) endorheic river terminations along desert margins, especially if adjacent to mountain belts (e.g. the various circum Saharan chotts, playas and sabkhas adjacent to Atlas Mountains), or 2) to ancient inherited paleodrainage depressions (as in the majority of the interior salt lakes of Australia or the southern Africa pans). Another hot arid desert (BWh) evaporite association is defined by termination outflow rims of deep artesian systems, as in Lake Eyre North, Australia (8,528 km2, with an ephemeral halite crust up to 2 m thick in its southern portion). Similar, deeply-circulating, meteoric artesian hydrologies help explain the distribution of chotts in the BWh zone of NE Africa. Unlike Atacama and Uyuni in the Andes, none of these modern BWh artesian systems preserve stacked decametre-thick salt beds, nor did they do so at any time in the Quaternary. Rather, the most extensive style of BWh salt in meteoric-fed artesian outflow zones is as dispersed crystals of gypsum and halite in a terrigenous redbed matrix (sabkha) or as visually impressive large ephemeral saline flats and pans covered by metre-scale salt crusts that dissolve and reform with the occasional decadal freshwater flood (Warren 2016; Chapter 3). Sediments of such continental groundwater outflow zones are typically reworked by eolian processes and, due to a lack of long term watertable stability, the longterm sediment fill is matrix-rich and evaporite-poor, with the Quaternary sediment column typified by episodes of deflation, driven by 10,000-100,000 year cycles of glacial-interglacial climate changes.

It seems that to form and preserve laterally-extensive decametre-thick stacked beds of halite in a Quaternary time-framework requires an actively subsiding tectonic depression in a cooler high-altitude continental desert, where temperatures and evaporation rates are somewhat lower than in BWh settings, allowing brine to pond and remain at or near the surface for longer periods (Figures 6, 7a). But perhaps more importantly, all of the larger regions of the Quaternary world, where thick stacked bedded (not dispersed) evaporites are accumulating, are located in continental regions with drainage hinterlands where dissolution of older halokinetic marine-fed salt masses are actively supplying substantial volumes of brine to the near surface hydrology. This halokinetic-supplied set of deposits includes, Salar de Uyuni and Salar de Atacama in the Andean Altiplano, the Kavir salt lakes of Iran, the Qaidam depression of China and the Dead Sea (Table 1).


Marine-edge evaporites

Thick sequences of stacked Quaternary evaporite beds with a marine-brine feed are far less common and far smaller than meteoric/halokinetic Quaternary continental evaporite occurrences. Relatively few marine-fed evaporite regions exist today with areas in excess of 250 km2 (Table 1; Figures 6, 7b). By definition, in order to be able to draw on significant volumes of seawater, these basins must operate with a subsealevel hydrology. This allows large volumes of seawater to seep into the depression and evaporate. It also means most of these deposits are located near the continental edge where a freestanding mass of seawater is not too distant

The largest known deposit of this group is Lake Macleod on the west coast of Australia, with an area of 2,067 km2 and containing a 10m-thick Holocene gypsum/halite bed (Figure 7b). It hosts a saltworks producing some 1,500,000 tonnes/year of halite from lake brines in a BWh setting (Warren, 2016). A smaller marine seepage example, with a similar Quaternary coastal carbonate dune-hosted seepage hydrology, is Lake MacDonnell near the head of the Great Australia Bight. It has an area of 451 km2, a 10m-thick fill of Holocene bedded gypsum and is located in a milder BSk setting, compared to Lake Macleod. Even so, annually, the Lake MacDonnell operation is quarrying more than 1.4 million tonnes of Holocene coarsely-crystalline near-pure gypsum and producing more that 35,000 tonnes of salt via by pan evaporation of lake brines.

Interestingly, when the climatic settings of Holocene coastal salinas of southern and western Australia are compared, all show similar interdunal sump seepage hydrologies with unconfined calcarenite aquifers, yet it is clear that gypsum evaporite beds dominate in BSk and lower precipitation levels, with more carbonate, in Csb coastal settings typified by hot dry summers. Halite dominates the marine-fed bedded fills in BWh coastal settings, while Coorong-style meteoric-fed carbonates dominate in similar interdunal coastal seepage depressions in the more the humid and somewhat cooler Csb settings of the Coorong region.


One of the most visually impressive marine seep systems in the world is Lake Asal, immediately inland of the coast of Djibouti, with an area of only 54 km2 it is much smaller than the 250 km2 cutoff used for this discussion. It is located in a BWh climate, similar to that of the Danakil depression, contains subaqueous textured gypsum and pan halites, and lies at the bottom of a hydrographically-isolated basalt-floored depression with a brine lake surface some 115m below sealevel (Figure 8; see Warren, 2016 Chapter 4 for geological detail). This difference in elevation between the nearby Red Sea and the lake floor drives a marine seep hydrology, so that seawater-derived groundwater escapes as springs along the basaltic lake margin. Most of the cations and anions in the seawater feed, that ultimately accumulate as salts in the subsealevel Asal sump, move lakeward via gravitational seepage along fractures in a basaltic ridge aquifer separating the Red Sea from the brine lake, in what is an actively extending continental rift that will shortly become and arm of the Red Sea.

That there are very few large marine-fed bedded Quaternary evaporite systems is illustrated by summing the total area of large active continental-fed evaporite areas (>250km2) listed in Figure 2, which gives a total surface area worldwide in excess of 360,000 km2. In contrast, the total area of large modern marine-fed bedded salt systems, at slightly less 10,000 km2, is more than an order of magnitude smaller. This low value for large coastal marine-fed evaporite occurrences is in part because many classic coastal sabkhas, with characteristic dispersed evaporites in their supratidal sediments and long considered to be archetypal marine-fed groundwater evaporite system, are now seen as mostly continental brine-fed hydrologies.

For example, the modern Abu Dhabi sabkha system (1,658 km2; BWh) has been shown by Wood (2010) to be a continental groundwater outflow area, where most of ions precipitating as salts in the supratidal zone are supplied by upwelling of deeply-circulated meteoric waters, not seawater flooding (Warren, 2016; Chapter 3). Similar continental hydrologies, resurging into the coastal zone. supply much of the salt accumulating in the suprasealevel sabkhas near Khobar in Saudi Arabia (BWh), Rann of Kutch in India (28,000 km2, BWh), Sabkha Matti (2,955km2, BWh) in the Emirates, and Sabkha de Ndrhamcha (634 km2, BWh) in Mauritania. And yet today all of these large sabkha occurrences are located just inland of modern coastal zones and so, without hydrological knowledge, are easily interpreted as marine. The distinction between a water budget and a salt supply budget emphasizes a general observation in Holocene evaporite systems that, in order to define the main fluid carrier for the salt volume found in any supratidal part of an evaporitic depression, it is important to understand and quantify the nature of the groundwater feed, be it by marine or nonmarine, in both continental-interior and marine-margin settings. It also means that surface runoff and seawater washovers, while at times visually impressive, typically do not supply the greater volume of preserved salts in most modern coastal sabkha systems.

Due to the highly impervious nature of muddy sabkha sediment, an occasional seawater storm flood into a coastal margin mudflat does not mean the pooled seawater ever penetrates the underlying sabkha. Most of its solute load is deposited as an ephemeral surface crust of halite that is a few centimetres thick atop the sabkha muds (Wood et al., 2005). Based on Wood’s and other hydrological studies of modern coastal sabkhas in BWh settings, centred on the Middle East, it seems that the salt supply to most modern coastal sabkha depressions is still not at hydrological equilibrium with the present sealevel, which was reached at the beginning of the Holocene some 6,000-8,000 years ago. That is, modern zones of continental groundwater outflow along an arid coast can have watertables that are up to a metre of two above sealevel and are strongly influenced by the resurgence of seaward-flowing deeply circulating, continental groundwaters (it is axiomatic that surface runoff and local meteoric recharge tend to be limited in BWh settings). In this situation resurging waters in the sabkha tend to have a dominantly continental ionic supply for their preserved salts.

Lastly, in terms of the climatic and hydrological pre-requisites for the accumulations of thick bedded Holocene salt deposits, one must recognize that marine-margin sabkha mudflats do not have the same geohydrology as a near-coastal, hydrographically-isolated seepage-fed sub-sealevel salina depression. A BWh or BSk near-coastal salina is slowly but continually resupplied ions via springs fed by the effusion of seawater, moving under a gravity drive (evaporative drawdown), through an aquifer that is the barrier separating the salina depression from the adjacent ocean. Until the depositional surface reaches hydrological equilibrium, it draws continually on the near limitless supply of ions in the adjacent salty reservoir that is the world’s ocean. Salts growing displacively in the supratidal parts of a sabkha cannot call on a drawdown hydrology and can only be supplied marine salts from salt spray as it is blown inland or from waters washed over the sabkha by the occasional storm driven wash-over and breakout (Figure 9; Warren and Kendall, 1985).


So what?

So, if we based our ideas of where ancient bedded evaporites formed on a strictly uniformitarian approach using Quaternary analogues, then the study of where bedded salts have formed best in the world over the last two million years leads to a conclusion that large bedded salt deposits are not marine fed. Rather, in the Quaternary, thick bedded salts form best in tectonically active, subsiding hypersaline groundwater sumps located in high-altitude high-relief cold-arid deserts. These depressions are hydrographically closed, with the purer, most voluminous, examples of 100m-thick evaporite successions located in tectonically active piggy-back depressions, with lake floors and hydrologies that are more than 2000 m above sea level. Their hydrologies are endorheic and strongly influenced by deeply circulating meteoric waters. In addition, the better examples of thick stacked bedded salts are supplied ions via the dissolution of older marine halokinetic salts in the surrounding drainage basin (Table 1).

Yet, anyone working in ancient (pre-Quaternary) evaporites knows from simple arguments of salt volumetrics versus brine sources, and the nature of the enclosing sediments, that they are part of a dominantly marine basin fill. This will be the focus

References

Gordon, W. A., 1975, Distribution by latitude of Phanerozoic evaporite deposits: Journal of Geology, v. 83, p. 671-684.

Köppen, W., 1900, Versuch einer Klassification der Klimate, vorzsugsweise nach ihren Beziehungen zur Pflanzenwelt: Geographraphische Zeitschrift, v. 6, p. 593-611.

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006, World Map of the Köppen-Geiger climate classification updated: Meteorologische Zeitschrift, v. 15, p. 259-263.

Stieljes, L., 1973, Evolution tectonique récente du rift d'Asal: Review Geographie Physical Geologie Dynamique, v. 15, p. 425-436.

Warren, J. K., 2010, Evaporitic source rocks: mesohaline responses to cycles of “famine or feast” in layered brines, Quaternary carbonate and evaporite sedimentary facies and their ancient analogues, John Wiley & Sons Ltd., p. 315-392.

Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

Warren, J. K., and C. G. S. C. Kendall, 1985, Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings; modern and ancient: Bulletin American Association of Petroleum Geologists, v. 69, p. 1013-1023.

Wood, W. W., 2010, An historical odyssey: the origin of solutes in the coastal sabkha of Abu Dhabi, United Arab Emirates, Quaternary carbonate and evaporite sedimentary facies and their ancient analogues, John Wiley & Sons Ltd., p. 243-254.

Wood, W. W., W. E. Sanford, and S. K. Frape, 2005, Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat: Chemical Geology, v. 215, p. 361-372.



[1] The word desert comes from the Latin dēsertum (originally "an abandoned place"), a participle of dēserere, "to abandon."

 


Recent Posts


Tags

Dead Sea saltworks CO2 causes of glaciation rockburst potash ore lapis lazuli endosymbiosis bischofite Stebnik Potash vadose zone anomalous salt zones Lamellibrachia luymesi Neutron Log salt mine chert salt trade water on Mars MOP Lop Nur evaporite dissolution Belle Isle salt mine Hyperarid K2O from Gamma Log epsomite Magdalen's Road extrasalt natural geohazard Dead Sea caves Thiotrphic symbionts sedimentary copper Mega-monsoon Crescent potash capillary zone African rift valley lakes organic matter methanogenesis circum-Atlantic Salt Basins silica solubility mine stability Muriate of potash anthropogenic potash Corocoro copper dissolution collapse doline solikamsk 2 Archean Jefferson Island salt mine well logs in evaporites High Magadi beds Seepiophila jonesi gassy salt lithium brine Zaragoza Five Island salt dome trend subsidence basin namakier lazurite Proterozoic oil gusher Catalayud Kalush Potash salt periphery SedEx Lop Nor 18O HYC Pb-Zn antarcticite sulfate Weeks Island salt mine authigenic silica supercontinent evaporite-hydrocarbon association Bathymodiolus childressi halophile hydrogen GR log recurring slope lines (RSL) gas outburst methanotrophic symbionts sepiolite sinjarite snake-skin chert salt seal basinwide evaporite black salt North Pole well log interpretation Red Sea Warrawoona Group lot's wife deep seafloor hypersaline anoxic basin brine lake edge 13C enrichment crocodile skin chert Dallol saltpan halotolerant jadarite DHAL lithium battery Realmonte potash water in modern-day Mars Deep Clayton Valley playa: Sumo zeolite seal capacity base metal meta-evaporite gas in salt carbon oxygen isotope cross plots evaporite-metal association Mesoproterozoic solar concentrator pans salt karst deep meteoric potash Schoenite cauliflower chert allo-suture Zabuye Lake Koeppen Climate blowout nitrogen venice ancient climate intersalt Pangaea saline clay stable isotope flowing salt hydrothermal potash anthropogenically enhanced salt dissolution salt suture dark salt perchlorate Kara bogaz gol Badenian alkaline lake sulfur Precambrian evaporites mass die-back NPHI log halite eolian transport Lake Magadi halokinetic sulphur Atlantis II Deep Messinian hydrothermal karst Karabogazgol Gamma log evaporite carbon cycle magadiite nuclear waste storage Calyptogena ponderosa bedded potash kainitite 13C intrasalt hectorite Salar de Atacama vestimentiferan siboglinids Neoproterozoic Oxygenation Event CO2: albedo source rock climate control on salt York (Whitehall) Mine Ure Terrace Pilbara lithium carbonate Musley potash Great Salt Lake marine brine Boulby Mine Platform evaporite mirabilite well blowout evaporite karst astrakanite stevensite Turkmenistan hydrological indicator tachyhydrite Danakhil Depression, Afar brine pan Evaporite-source rock association waste storage in salt cavity Ingebright Lake hydrohalite auto-suture vanished evaporite geohazard doline Ethiopia Hadley cell: Hell Kettle Density log Paleoproterozoic Oxygenation Event carnallitite sulphate palygorskite Sulphate of potash halite-hosted cave NaSO4 salts potash ore price salt leakage, dihedral angle, halite, halokinesis, salt flow, SOP Ripon knistersalz Lomagundi Event cryogenic salt mummifiction methane Quaternary climate Lake Peigneur lunette MVT deposit CaCl2 brine Koppen climate salt ablation breccia 18O enrichment salt tectonics Stebnyk potash silicified anhydrite nodules DHAB McArthur River Pb-Zn gypsum dune gem sinkhole H2S wireline log interpretation Deep seafloor hypersaline anoxic lake trona Dead Sea karst collapse dihedral angle nacholite RHOB sodium silicate freefight lake brine evolution collapse doline potash Neoproterozoic

Archive