Salty Matters

The Blog is written by me, John Warren. Once every three or four weeks or so I will post an article or two on an evaporite topic that has piqued my interest. On the Saltwork Publications webpage (under "the Works") there is a growing library of pdfs and epubs based on these blogs. These articles on the website have much higher resolution extractable graphics in than in the blog. There is also a link to this set of pdfs and epubs on the home page (www.saltworkconsultants.com).

Volatile evaporite interactions with magma Part 1 of 3: Indications of hydrated salts?

John Warren - Sunday, February 10, 2019

Introduction

Direct and indirect interactions between magma and evaporites at a regional scale are neither well documented, nor well understood. Mostly, this is because little or no salt remains once the high-temperature interactions have run their course; instead, there is a suite of indirect geochemical and indicator-mineral assemblages (Warren, 2016). Aside from the presence of what can be ambiguous indicator suites, some hard-rock geologists with a career working in igneous and metamorphic terranes may not be well versed in textures indicative of the former presence of sedimentary evaporites, nor their varying volatility, nor their meta-evaporitic and meta-igneous siblings.

The term pyrometasomatic encompasses some, but not all, of the types of salt-magma interaction and reactions that occur when evaporites and molten magmas of different types are nearby. Styles of evaporites interactions with magma are a spectrum, with two endmember situations; 1) orthomagmatic (salt-assimilative and internal to the magma), and 2) paramagmatic (salt-interactive and external to the magma). Both encompass outcomes that can include a variety of substantial ore deposits (Warren, 2016; Chapter 16). Only in situations where igneous sills and dykes have intruded salt masses, with contacts preserved, can direct effects of magma-salt interaction be documented. Even then, determining the timing of the evaporite igneous interaction can be problematic; one must ask if the chemistry and texture indicate, 1) syn-igneous emplacement, or 2) post-emplacement alteration and deeply circulating groundwater flushing, or 3) a combination.

Orthomagmatic and paramagmatic evaporite associations are distinct from occurrences of primary igneous/magmatic anhydrites, which precipitate from sulphate-saturated melts. Igneous anhydrite forms independently of any sedimentary evaporite assimilation, as seen, for example, in anhydrite crystals crystallised in trachyandesitic pumice erupted from El Chichón Volcano in 1982, or in dacitic pumices erupted from Mount Pinatubo in 1991 and in acidic lavas in the Yanacocha district of northern Peru (Luhr et al., 2008; Chambefort et al., 2008). These evaporite assimilations are also distinct from fumarolic anhydrite, which precipitates where groundwaters and sulphur-bearing magmatic fluids interact, as on Usu Volcano, Hokkaido, and many central American and Andean volcanoes such as El Laco (Zimbelman et al., 2005). Likewise, they are distinct from the anhydrite precipitates (white smokers) in and below submarine vents across numerous mid-oceanic ridges (Humphris et al., 1995). See Warren 2016 (Chapter 16) for more geological detail on these non-evaporite-igneous anhydrite occurrences.

Cooking with salt (thermal decomposition of hydrated versus non-hydrated salts)

Perhaps the most critical factor controlling the local intensity of magmatic interaction with an evaporitic country rock is whether or not the sedimentary evaporite assemblage, in proximity to an igneous heat source, contains abundant hydrated salts, such as gypsum, polyhalite or carnallite. Hydrated evaporite salts, when interacting with the igneous realm, are highly volatile and likely to decompose. They tend to release their water of crystallisation at temperatures many hundreds of degrees below the melting points of their anhydrous counterparts (Table 1).


In contrast, anhydrous salts, such as halite beds intruded by igneous dykes or sills, are much less reactive. At a local scale (measured in metres) with respect to an intrasalt-igneous interaction, there are a number of documented thermally-driven alteration styles, typically created by the intrusion of dolerite dykes and sills into cooler halite, or the outflow of extrusive igneous flows over cooler halite beds (Knipping and Herrmann, 1985; Knipping, 1989; Grishina et al, 1992, 1998; Gutsche, 1988; Steinmann et al., 1999; Wall et al., 2010). Hot igneous material interacts with somewhat cooler anhydrous salt masses, typically halite or anhydrite, to create narrow but distinct heat and mobile fluid-release envelopes(Figure 1), also reflected in the resulting recrystallised inclusion-modified salt textures (Figure 2).


Based on studies of inclusion chemistry and homogenization temperatures in fluid inclusions in bedded halite near intrusives, it seems that the extent of the influence of a dolerite sill or dyke in bedded salt is marked by fluid (brine)-inclusion migration. This is evidenced by the disappearance of chevron structures and consequent formation of clear (sparry) recrystallised halite, with a new set of higher-temperature brine inclusions located at intercrystal or polyhedral intersections. Such a migration envelope is documented in bedded Cambrian halites intruded by end-Permian dolerite dykes in the Tunguska region of Siberia (Figure 2; Grishina et al., 1992). There, as a rule of thumb, an alteration halo extends up to twice the thickness of the dolerite sill above the sill and almost the thickness of the sill below (Figure 1).

Four inclusion type associations were found in halite as a function of the ratio of the distance of the sample from the intrusion contact (d) to the thickness of the intrusion (h), i.e. d/h (Figure 2). Chevron structures with aqueous inclusions progressively disappear as d/h decreases; the disappearance of chevrons occurs at greater distances above than below the intrusive sill. At d/h < 5 above the sill, a low-density CO2 vapour phase appears in brine inclusions, at d/h < 2 H2S-bearing liquid-CO2 inclusions appear, sometimes associated with carbonaceous material and orthorhombic S8, and for d/h < 0.9, CaCl2, CaCl2.KCl and nCaCl2.n MgCl2 solids occur in association with free water and liquid CO2 inclusions, with H2S, SCO, and Sg. The d/h values marking the transitions outlined above are lower below the sills than above. The water content of the inclusions progressively decreases on approaching the sills, whereas their CO2 content and density increase. Carnallite, sylvite and calcium chloride can occur as solid inclusions in the two associations nearest to the sill for d/h<2. Carnallite and sylvite occur as daughter minerals in brine inclusions. The presence of carbon dioxide is taken to indicate fluid circulation and dissolution/recrystallisation phenomena induced by the basalt intrusions. The origin of carbon dioxide is likely related to carbonate dissolution during magmatism (see Salty Matters, Oct 31, 2016).


In some shallow locations, relatively rapid magma emplacement can lead to linear breakout trends outlined by phreatomagmatic or phreatic explosion craters. Such phreatic explosion craters have been imaged on the Tertiary seafloor horizons in parts of the North Sea (Figure 3; Wall et al., 2010). The dykes were emplaced into Paleozoic and Mesozoic sediments and have a common upper termination in Early Tertiary sediments. The dykes are part of the British Tertiary volcanic province emplaced some 58 Ma. These dykes are characterised by a narrow 0.5–2 km wide vertical disturbance of seismic reflections that have linear plan view geometry. Negative magnetic anomalies directly align with the vertical seismic disturbance zones and indicate the presence of underlying igneous material. Linear coalesced collapse craters are found above the dykes. The collapse craters formed above the dyke due to the release of volatiles at the dyke tip and resulting gaseous expansion and subsequent volume loss. According to Wall et al. (2010), the larger craters likely formed due to explosive phreatomagmatic interaction between magma and pore water. The linearly aligned collapse craters can be considered an Earth analogue to Martian pit chain craters.

A phreatic eruption, also called a phreatic explosion, ultravulcanian eruption or steam-blast eruption, occurs when magma heats ground or surface water and is a separate but related occurrence to a phreatomagmatic eruption. A phreatomagmatic deposit typically contains solid inclusions of magmatic (igneous) material, whereas debris tied to a phreatic deposit does not, but ties to the effects of juvenile and deeply circulated hydrothermal waters. Extreme temperatures associated with an emplaced magma (anywhere from 500 to 1,170 °C) can cause a near-instantaneous phase change to steam, so forming a phreatomagmatic deposit. That is, rapid heating results in an intense explosion made up of steam, water, ash, rock, and volcanic bombs. During the eruption of Mount St. Helens, hundreds of steam explosions preceded the1980 Plinian eruption of the volcano core. Many authors argue a less intense geothermal event results in a mud volcano, but there are many other active mud volcanoes worldwide that tie to compactional overpressure unrelated to any magma emplacement (Warren et al., 2011). As the published interpretation of aligned phreatic breakout structures illustrated in Figure 3 is based on seismic without well control, the explosion mechanism may be solely phreatic heating or phreatomagmatic.


Deposits of phreatic eruptions (as contrasted with a phreatomagmatic eruption) typically include steam and rock fragments without the inclusion of fragments derived from liquid magma, lava or volcanic ash. The temperature of the phreatic fragments can range from cool to incandescent. So if molten magma is present, the resulting explosive debris deposit is typically classified as a phreatomagmatic eruption. These eruptions can create broad, low-relief craters called maars. In contrast, phreatic explosions lack debris derived from molten (igneous) material, but emplacement can be accompanied by carbon dioxide or hydrogen sulfide gas emissions. CO2 can asphyxiate at sufficient concentration; H2S is a broad spectrum poison. A 1979 phreatic eruption on the island of Java killed 140 people, most of whom were overcome by poisonous gases. Phreatic eruptions, even if the deposit lacks igneous rock fragments, are typically classed as a type of volcanic eruptions because a phreatic eruption can force juvenile fluids to the surface. But when a phreatic explosion is related to an igneous feature intersecting an evaporite bed, the resultant textures show a contrast between heating of anhydrous and hydrous salts


Hydrous salt interactions in Germany

Textures created by an igneous intrusion into a variably-hydrated evaporite succession can be studied in the dyke-and sill-intruded halite levels exposed in the walls of potash mines of the Werra-Fulda district of Germany (Figure 4; Steinmann et al., 1999; Schofield et al., 2014). There, the Permian Zechstein salt series contains two important potash salt horizons (2-10m thick), which are mined at a depths ≈ 800 m, from within a 400m thick halite host (Figure 4a). In the later Tertiary, basaltic melts intruded these Zechstein evaporites, but it seems only a few dykes reached the Miocene landsurface. The basaltic melt ties to regional volcanic activity, some 10 to 25 Ma. Basalts exposed in the halite-dominant portions of the mine walls are typically subvertical dykes, rather than sills. The basaltic intervals intersect the salt over zones up to several kilometres wide (Figure 4b). However, correlations of individual dyke swarms, either between different mines, or between surface and subsurface outcrops is difficult.


From a paleogeographic perspective, the Werra-Fulda Basin is situated in a southern embayment of the European Zechstein Basin. It contains cyclic evaporites of the Werra Formation (Z1). In the Neuhof area, the evaporites of the Zechstein are underlain by siliciclastic rocks of the Permian Rotliegend interval. The higher Zechstein-cycles (Z2 – Z7), on top of the Werra Formation, consist of a siliciclastic succession with intercalated limestone and anhydrite layers (Strauch et al., 2018; Beer and Barnasch, 2018). The Werra Formation is dominated by rock salt with a thickness up to 300 m.

Two potash seams (Seam Hessen and Seam Thüringen) separate the rock salt of the Werra Formation into three distinct units (Figure 4b). Lower, Middle and Upper Werra rock salt). Seam Hessen mainly consists of hard salt (kieserite, sylvite, halite and anhydrite). It is overlain by several, potash mineral-bearing horizons which show a strong vertical and lateral heterogeneity and consist of kieserite, sylvite, carnallite, halite and anhydrite. Internally, three separate units are identified within the potash Seam Hessen (Figure 4). The “Wurmsalz”, a hard salt with up to four strongly folded anhydritic clay bands represents the lower part of Seam Hessen. The middle part consists of massive, kieserite-rich hard salt with abundant sylvite lenses (“Flockensalz”). The “Bändersalz”, a banded hard salt which is typically intercalated with brownish, halitic layers occurs in the upper part of Seam Hessen. Potash Seam Thüringen usually occurs around 50 m below Seam Hessen. Its lower part is dominated by a well-bedded hard salt with intercalated rock salt. Its upper part consists of a variety of rock types including carnallite, sylvite and hard salt.

In the Fulda region the thermally-driven release of water of crystallisation within particular Zechstein salt beds intersecting igneous dykes creates thixotropic or subsurface “peperite” textures in hydrated carnallitite ore layers, where heated water of crystallisation escaped from the hydrated-salt lattice. Dehydration-driven loss of mechanical strength focuses zones of magma entry into particular horizons in the salt mass, wherever hydrated salt layers were intersected (Figure 5b verses 5c). In contrast, dyke and sill margins are much sharper and narrower in zones of contact with anhydrous salt intervals (Figure 5a, d; Schofield et al., 2014).

Accordingly, away from the immediate vicinity of the direct thermal aureole, heated and overpressured dehydration waters can enter a former Zechstein carnallite halite bed, and drive the creation of extensive soft sediment deformation and peperite textures in the previous hydrated layer (Figure 5c, d). Mineralogically, sylvite and coarse recrystallised halite dominate the salt fraction in the peperite intervals/beds. These deformed beds formed within a hydrated salt bed and so differ from the conventional notion of volcanic peperites indicating water-saturated sediment interactions with very shallow dyke or sill emplacements.

Sylvite in these altered zones is a form of dehydrated carnallite, not a primary-textured salt. In the Fulda region, such altered zones and deformed units can extend along former carnallite layers to tens or even a hundred or more metres from the dyke feeder. Ultimately, the deformed potash bed passes laterally out into the unaltered bed, which can retain abundant inclusion-rich primary chevron halite and carnallite (Figure 5c versus 5d). That is, nearer the basalt dyke, the carnallite is transformed mainly into inclusion-poor halite and sylvite, the result of recrystallisation combined with incongruent flushing of warm saline fluids mobilised from the hydrated carnallite crystal lattice as it was heated and decomposed in response to nearby dyke emplacement. During such Miocene salt alteration/thermal metamorphism in the Fulda region, NaCl-rich diagenetic and juvenile fluids were mixed with fluids originating from thermally-mobilised crystallisation water in the carnallite as it converted to sylvite.

Nearer the basalt dyke, the carnallite is largely transformed into inclusion-poor halite and sylvite, the result of incongruent flushing of warm saline fluids mobilised from the hydrated carnallite crystal lattice as it was heated by dyke emplacement. During Miocene salt alteration/thermal metamorphism in the Fulda region, NaCl-fluids were mixed with fluids originating from thermally-mobilised crystallisation water in the carnallite, as it converted to sylvite. This brine mixture altered the basalts during post-intrusive cooling, an event which numerical models suggest was quite rapid (Knipping, 1989): a dyke of less than 0.5 m thickness probably cooled to temperatures less than 200°C within 14 days of dyke emplacement.

Worldwide, igneous dykes intersecting salt beds tend to widen to become sills in two zones: 1) along evaporite units within the halite mass that contain hydrated salts, such as carnallite or gypsum (Figure 5b, c) and, 2) where rising magma has ponded and so created laccoliths at the upper or lower halite contact with the adjacent nonsalt strata, or against a salt wall (Warren, 2016). The first alteration of the hydrated salt layer is a form of mineral alteration and recrystallisation in response to a pulse of released water/steam as dyke-driven heating forces the dehydration of hydrated salt layers. The second alteration is often folding and fluid-like disaggregation of the former, now dehydrated, layer in response to the mechanical strength contrast at a hydrated-nonhydrated salt-bed contact (Warren, 2016).

Surface expression of hydrated bedded salts interacting with magma in Dallol, Ethiopia

Local potash ores typify thermal sump depressions in the Dallol and Musley areas (Figure 6a, b, c, 7) where a similar set of subsurface destabilisation processes occurred when rising magma reached the levels of hydrated salts (kainite and carnallite beds) in the Houston Formation of the Danakhil depression fill (see Warren 2016 and Bastow et al. 2018 for more detailed discussion of the potash stratigraphy). To attain these hydrated salt levels the rising dyke swarm had passed relatively passively through the Lower Rocksalt Formation (Salty Matters, April 29, 2015). Emplacement of the magma/dykes into hydrated evaporites below the vicinity of what is now the Dallol Mound would have mobilised and deformed the hydrated potash salt level, converting carnallite to sylvite, kainite to bischofite and lesser kieserite, as well as creating widespread cavities filled with rising pressured volatiles carried by MgCl and KCl brines. Pressurisacreation of a cavernous network filled with volatiles at the level of the Houston Formation would have aided in forming the four-way dip closure now seen on the exposed and eroding salt beds that make up much of the Dallol Mound surface.


Once these hydrothermal cavities dissolved and breached the way to surface, the feeder brines cool and precipitate prograde salts such as halite, sylvite and bischofite. Such destabilisation has likely accommodated the emplacement of a basaltic sill at the level of the potash salts, in turn driving the uplift of the lake beds above this region outlined by the centripetal dips of the Dallol Mound. Mound-related uplift and hydrothermal activity then stimulate the formation of natural areas of ground collapse, sulphurous and acidic springs and fumaroles, along with the creation of water-filled chimneys and doline sags, filling with various hydrothermal salts, in the vicinity of the volcanic mound  (Figure 6).

That is this type of potash in the Dallol Mound region is hydrothermally reworked from the uplifted equivalents of the Houston Formation. Even today this hydrology is precipitating carnallitite (associated with bischofite and minor kieserite) in various hydrothermal brine pools atop and around the Dallol Mound, such as the carnallite-dominant Crescent deposit (Figure 7). These hydrothermal salts owe their origins to daylighting of pressurised fluid systems and cavities.


The last pressurised phreatic explosion crater formed in 1926. They were created by the volatile products of hydrated salt layers (Houston Fm) where these salts had come into contact with thermal aureoles or actual lithologies of newly emplaced dykes that had penetrated the underlying halite section. Volcanic rock fragments and other igneous debris have yet to make it to the surface in the Dallol Mound region, although active volcanic mounds and flows do cover the saltflat surface tens of kilometres to the south (Erte Alle ) and north. Based on the analogy exposed within the Zechstein-hosted potash mines of the Fulda region of Germany, it is likely that as well as creating at-surface brine pools, this hydrothermal dyke-related hydrology locally converts most subsurface carnallitite to a disturbed sylvinite bed at the level of contact with the Houston Fm.

Implications

It seems a "one-size-fits-all" model does not characterise magmatic interactions with massively bedded evaporites. Instead, there is a mineralogical control to the intensity of the interaction and the depth of thermal influence of recrystallisation and mobilisation textures. When a dyke-swarm intersects halite or anhydrite the thermally-driven recrystallisation and fluid migration halo is more limited, as outlined in Figure 1 and Figure 5a, d.

In contrast, when a dyke swarm intersects an interval containing hydrous salts such kainite, carnallite or gypsum, the heating drives the expulsion of the bound-water at decomposition temperatures much lower than the salts melting point (Table 1). Such hydrous-salt intervals devolatise, fluidise and flow, with the effects of the heating halo extending much further away from the heat source, driven in part by steam-driven hydrofracturing. On cooling, the resulting mineralogy in the highly-deformed bed is dominated by the anhydrous form of the devolatised salt, as in the sylvite unit after carnallite as seen in potash seams adjacent to dykes in the Fulda Region (Figures 5b, c).

Closer in to the heat source, the basalt that has moved in along the hydrous potash beds show abundant peperite textures (Figure 5c; Schofield et al., 2014). Actually, this is a unique form of peperite that is tied to beds of hydrous evaporite. It forms outside the usual scenario envisaged for peperite whereby molten igneous material interacts with wet sediment, with the water in the wet sediment held in interparticle pores.

The classic definition of a peperite is that it is a "genetic term applied to a rock formed essentially in situ by disintegration of magma intruding and mingling with unconsolidated or poorly consolidated, typically wet sediments. The term also refers to similar mixtures generated by the same processes operating at the contacts of lavas and other hot volcaniclastic deposits with such sediments" (Skilling et al. 2002).

In the case of the bedded hydrous salt intervals, before the intrusion of the igneous heat source, there was little to no free water, other than occasional brine inclusions in associated halite chevrons. What makes these hydrous-salt peperites interesting is that it is the igneous heating drives a mineralogic transformation in the hydrous salts that makes the formerly "dry" salt bed become "wet" sediment.

Before our work in the Fulda region (Schofield et al., 2014), the nature of igneous interactions with evaporites was understood to be mainly that documented by studies in areas with intrusives interacting with thick anhydrous halite and anhydrite beds. The heating haloes were seen as driving recrystallisation and brine migration over limited lateral distances of a few metres. However, the potash seam interactions in the Fulda region show this alteration distance can be much greater (hundreds of metres) id hydrous salt layers are heated.

The surface geology in the Dallol Mound region of Ethiopia shows an even more impressive set of igneous dyke hydrated salt interactions (Warren, 2016). There the potash interval known as the Houston Formation is a tens-of-metres thick section of hydrated salts below the upper halite unit and atop the lower halite. When the rising igneous dyke swarm rose to the level of Houston Formation, it drove a broad linear devolatisation zone in the dyke-heated alteration halo. This, in turn, forced the formation of the closed anticlinal uplift structure that is the Dallol mound. The release of MgCl2 during volatisation also explains phreatic breakout features that are outlined by at-surface collapse dolines with their hot (104-108°C) brine lakes and unusual bischofite (MgCl2) precipitates. Likewise, the same set of processes explains the occurrences of metres to tens of metres thick bischofite intervals that are intersected in cores in some of the potash exploration wells in the vicinity of Dallol Mound (pers. obs). These are likely cavity fill deposits formed as a byproduct of kainite and carnallite devolatisation sourced at the level of Houston Formation.

This set of more mobile brine fluid escape features has implications for nuclear waste storage in halite successions where a storage cavity may be in proximity to an interval of hydrous evaporite salts. Halite-hosted purpose-built caverns in thick evaporite intervals are one of the safest places in the world to store waste but perhaps not in parts of the salt succession that entrain beds of hydrous salts such as carnallite or kainite (Warren, 2017).

References

Bastow, I. D., A. D. Booth, G. Corti, D. Keir, C. Magee, C. A.-L. Jackson, J. Warren, J. Wilkinson, and M. Lascialfari, 2018, The development of late-stage continental breakup: Seismic reflection and borehole evidence from the Danakil Depression, Ethiopia: Tectonics, v. 37.

Beer, W., and L. Barnasch, in press, Werra-Fulda-Becken, SDGG- Monography.

Chambefort, I., J. H. Dilles, and A. J. R. Kent, 2008, Anhydrite-bearing andesite and dacite as a source for sulfur in magmatic-hydrothermal mineral deposits: Geology, v. 36, p. 719-722.

Grishina, S., J. Dubessy, A. Kontorovich, and J. Pironon, 1992, Inclusions in salt beds resulting from thermal metamorphism by dolerite sills (eastern Siberia, Russia): European Journal of Mineralogy, v. 4, p. 1187-1202.

Grishina, S., J. Pironon, M. Mazurov, S. Goryainov, A. Pustilnikov, G. Fonderflaas, and A. Guerci, 1998, Organic inclusions in salt - Part 3 - Oil and gas inclusions in Cambrian evaporite deposits from east Siberia - A contribution to the understanding of nitrogen generation in evaporite: Organic Geochemistry, v. 28, p. 297-310.

Gutsche, A., 1988, Mineralreaktionen und Stotransporte an einem Kontakt Basalt-Hartsalz in der Werra-Folge des Werkes Hattorf: Unpubl. diploma thesis, thesis, Georg-August-Universita, Gottingen.

Humphris, S. E., P. M. Herzig, D. J. Miller, J. C. Alt, K. Becker, D. Brown, G. Brugmann, H. Chiba, Y. Fouquet, J. B. Gemmell, G. G., M. D. Hannington, N. G. Holm, J. J. Honnorez, G. J. Iturrino, R. Knott, R. Ludwig, K. Nakamura, S. Petersen, A. L. Reysenbach, P. A. Rona, S. Smith, A. A. Sturz, M. K. Tivey, and X. Zhao, 1995, The internal structure of an active sea-floor massive sulphide deposit: Nature, v. 377, p. 713-716.

Knipping, B., 1989, Basalt intrusions in evaporites: Lecture Notes in Earth Sciences (Springer-Verlag), v. 24, p. 132 pp.

Knipping, B., and A. G. Hermann, 1985, Mineralreaktionen und Stoff transporte an einem Kontakt Basalt-Carnallitit im Kalisalzhorizont Thüringen der Werra-Serie des Zechsteins: Kali und Steinsalz, v. 9, p. 111-124.

Luhr, J. F., 2008, Primary igneous anhydrite: Progress since its recognition in the 1982 El ChichÛn trachyandesite: Journal of Volcanology and Geothermal Research, v. 175, p. 394-407.

Schofield, N., I. Alsop, J. Warren, J. R. Underhill, R. Lehné, W. Beer, and V. Lukas, 2014, Mobilizing salt: Magma-salt interactions: Geology, v. 42, p. 599-602.

Skilling, I. P., J. D. L. White, and J. McPhie, 2002, Peperite: a review of magma–sediment mingling: Journal of Volcanology and Geothermal Research, v. 114, p. 1-17.

Steinmann, M., P. Stille, W. Bernotat, and B. Knipping, 1999, The corrosion of basaltic dykes in evaporites: Ar-Sr-Nd isotope and rare earth elements evidence: Chemical Geology, v. 153, p. 259-279.

Strauch, B., M. Zimmer, A. Zirkler, S. Höntzsch, and A. M. Schleicher, 2018, The influence of gas and humidity on the mineralogy of various salt compositions – implications for natural and technical caverns: Advances in Geoscience, v. 45, p. 227-233.

Wall, M., J. Cartwright, R. Davies, and A. McGrandle, 2010, 3D seismic imaging of a Tertiary Dyke Swarm in the Southern North Sea, UK: Basin Research, v. 22, p. 181-194.

Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

Warren, J. K., 2017, Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term: Earth-Science Reviews, v. 165, p. 302-341.

Warren, J. K., A. Cheung, and I. Cartwright, 2011, Organic Geochemical, Isotopic and Seismic Indicators of Fluid Flow in Pressurized Growth Anticlines and Mud Volcanoes in Modern Deepwater Slope and Rise Sediments of Offshore Brunei Darussalam; Implications for hydrocarbon exploration in other mud and salt diapir provinces (Chapter 10), in L. J. Wood, ed., Shale Tectonics, v. 93: Tulsa OK, AAPG Memoir 93 (Proceedings of Hedberg Conference), p. 163-196.

Zimbelman, D. R., R. O. Rye, and G. N. Breit, 2005, Origin of secondary sulfate minerals on active andesitic stratovolcanoes: Chemical Geology, v. 215, p. 37-60.

 

Danakil potash: K2SO4 across the Neogene: Implications for Danakhil potash, Part 4 of 4

John Warren - Tuesday, May 12, 2015

How to deal with K2SO4

In this the fourth blog focusing on Danakhil potash, we look at the potash geology of formerly mined Neogene deposits in Sicily and the Ukraine, then compare them and relevant processing techniques used to exploit their K2SO4 ore feeds. This information is then used to help guide a discussion of processing implications for potash extraction in the Danakhil, where kainite is the dominant widespread potash salt. As seen in the previous three blogs there are other potash mineral styles present in the Danakhil, which constitute more restricted ore fairways than the widespread bedded kainaite, these other potash styles (deep meteoiric -blog 2 of 4 and hydrothermal - blog 3 of 4), could be processed to extract MOP, but these other potash styles are also tied to high levels of MgCl2, which must be dealt with in the brine processing stream. The most effective development combination is to understand the three occurence styles , define appropriate specific brine processing strams and then combine the products in an single processing plant and then produce sulphate of potash (SOP), rather the Muriate of Potash (MOP), as SOP has a 30% price premium in current potash markets.

Kainite dominated the bedded potash ore feed in former mines in the Late Miocene (Messinian) sequence in Sicily and the Middle Miocene (Badenian) sequence in the Carpathian foredeep], Ukraine. Kainite also occurs in a number of potash deposits in the Permian of Germany and Russia. In Germany a combination of mined sylvite and kieserite is used to manufacture sulphate of potash (SOP). Interestingly, Neogene and the Permian are times when world ocean waters were enriched in MgSO4 (Lowenstein et al., 2001, 2003). In contrast, much of the Phanerozoic was typified by an ocean where MgSO4 levels were less. It is from such marine brine feeds that most of the world’s larger Phaneorzoic (SOP) potash ore deposits were precipitated (Warren, 2015). SOP is also produced from Quaternary Lake brines in China and Canada (see cryogenic salt blog; 24 Feb. 2015).

SOP in Messinian evaporites, Sicily

A number of potash mines on the island extracted kainitite from the late Miocene Solofifera Series of Sicily (Figure 1). The last of these mines closed in the mid-1990s, but portions of some are maintained and are still accessible (eg Realmonte mine). The halite-hosted potash deposits are isolated ore bodies within two generally parallel troughs, 115 km long and 5- 10 km wide, within the Caltanissetta Basin (Figure 1). They are separated by a thrust-related high 11-25 km wide and capped by the limestones of the “Calcare di Base”. Kainite is the dominant potash mineral in the mined deposits. Across the basin, ore levels constitute six layers of variable thickness, with a grade of 10%-16% K2O (pure kainite contains 18.9% K20), with very little insoluble content (0.4%-2.0%).

At the time the potash was deposited there was considerable tectonic activity in the area (Roveri et al. 2008, Manzi et al., 2011). Host sediments were deposited in piggy-back basins some 5.5 Ma atop a series of regional thrusts, so the ore layers have dips in the mines ranging up to 60° (Figure 2). Little if any of the limestone associated with the deposits was converted to dolomite, nor was the thick Messinian gypsum (upper and lower units), encasing the halite /kainitite units, converted to anhydrite, it remains as gypsum with well preserved depositional textures. However, the elevated salinities, and perhaps temperatures, required for kainite precipitation means anhydrite micronodules, observed in some ore levels, may be primary or syndepositional. A lack of carnallite, along with isotopic data, indicates that when the deposits were formed by the evaporation of the seawater, salinities did not usually proceed far past the kainite crystallization point (in contrast to Ethiopia where carnallite salinities typify the later stages of kainitite deposition)..

 

The largest Sicilian ore body was at Pasquasia, to the west of Calanisseta, covering a 24 km2 area at depths of 300-800 m (Figure 1). There were five ore beds at Pasquasia, all with highly undulating synclinal and anticlinal forms. The Number 2 bed was the thickest, averaging perhaps a 30-m thickness of 10.5% to 13.5% K2O ore. The Pasquasia Mine was last operational from 1952 to 1992.

 

Ore geology remains somewhat more accessible at the former Realmonte mine, near the town of Agrigento. There, four main depositional units (A to D from base to top) typify the evaporite geology. As at Pasquasia, kainitite was the targeted ore within a Messinian evaporite section that has total thickness of 400-600 m. As defined by Decima and Wezel, 1971, 1973; Decima, 1988, Lugli, 1999, the Realmonte mine section is made up of 4 units (Figure 2a):

- Unit A (up to 50 m thick): composed of evenly laminated grey halite with white anhydrite nodules and laminae that pass upward to grey massive halite beds.

- Unit B (total thickness ≈100 m): this potash entraining interval is dominated by massive even layers of grey halite, interbedded with light grey thin kainite laminae and minor grey centimetre-scale polyhalite spherules and laminae, along with anhydrite laminae; the upper part of the unit contains at least six light grey kainite layers up to 18 m-thick that were the targeted ore sequence. Unlike the Danakil, carnallite does not typify the upper part of this marine potash section. The targeted beds are in the low-angle dip portion of a thrust-folded remnant in a structural basin (Figures 2b, 3).

- Unit C (70-80 m thick): is made up of white halite layers 10-20 cm thick, separated by irregular dark grey mud laminae and minor light grey polyhalite and anhydrite laminae (Figure 3).

- Unit D (60 m thick): is composed of a grey anhydritic mudstone (15-20 m thick), passing up into an anhydrite laminite sequence, followed by grey halite millimetre to centimetre layers intercalated with white anhydrite laminae.


According to Lugli, 1999, units A and B are made up of cumulates of well-sorted halite plate crystals, up to a few millimeters in size. Kainite typically forms discrete laminae and sutured crystal mosaic beds, ranging from a thickness of few mm to a maximum of 2 m, intercalated and embedded within unit B (Garcia-Veigas et al., 1995). It may also occur as small isometric crystals scattered within halite mosaics. Kainite textures are dominated by packed equant-granular mosaics, which show possible pressure-dissolution features at some grain boundaries. The associated halite layers are dominantly cumulates, which show no evidence of bottom overgrowth chevrons, implying evaporite precipitation was a “rain from heaven” pelagic style that took place in a stratified permanently subaqueous brine water body, possibly with a significant water depth to the bottom of the permanent lower water mass.

Only the uppermost part of potash bearing portion of unit B shows a progressive appearance of large halite rafts along with localized dissolution pits filled by mud, suggesting an upward shallowing of the basin at that time. In many parts of the Realmonte mine spectacular vertical fissures cut through the topmost part of unit B at the boundary with unit C, suggesting desiccation and subaerial exposure at this level (Lugli et al., 1999).

The overlying unit C is composed of cumulates of halite skeletal hoppers that evolve into halite chevrons illustrating bottom growth after foundering of the initial halite rafts. Halite layers in unit C show numerous dissolution pits filled by mud and irregular truncation of the upper crystal terminations, implying precipitation from a nonstratified, relatively shallow water body. Palaeo-temperatures of the brine that precipitated these halite crystals are highly variable from 22 to 32°C (Lugli and Lowenstein, 1997) and suggest a shallow hydrologically unstable body of water, unlike units A and B.

The bromine content of halite increases from the base of unit A to the horizons containing kainite (layer B) where it obtains values of up to 150 ppm. Upwards, the bromine content decreases once more to where at the top of Unit C it drops below 13 ppm, likely indicating a marked dilution of the mother brine. The dilution is likely a consequence of recycling (dissolution and reprecipitation) of previously deposited halite either by meteoric-continental waters (based on Br content; Decima 1978), or by seawater (based on the high sulphate concentration and significant potassium and magnesium content of fluid inclusions; Garcia-Veigas et al., 1995).

As in the Danakhil succession, evaporite precipitation at Realmonte began as halite-CaSO4 interlayered succession at the bottom of a stratified perennial water body, which shallowed and increased in concentration until reaching potash kainite saturation. In Sicily, this was followed by a period of exposure and desiccation indicated by the presence of giant megapolygonal structures. Finally, seawater flooded the salt pan again, dissolving and truncating part of the previous halite layers, which was then redeposited under shallow-water conditions at the bottom of a nonstratified (holomitic) water body (Lugli et al., 1997, 1999).

Unlike Ethiopia, the Neogene kainite deposits of Sicily were deposited in a thrust “piggy-back” basin setting and not in a rift sump (Figure 2b). Mineralogically similar, very thick, rift-related, now halokinetic, halite deposits of Midddle Miocene age occur under the Red Sea’s coastal plain between Jizan, Saudi Arabia (where they outcrop) to Safaga, Egypt, with limited potash is found in some Red Sea locations at depths suitable for solution mining (Notholt 1983; Garrett, 1995). Potash-enriched marine end-liquor brines characterise Red Sea geothermal springs, implying a more sizeable potash mass may be (or once have been) present in this region. Hite and Wassef (1983) argue gamma ray peaks in two drill hole logs in this area suggest the presence of sylvite, carnallite and possibly langbeinite at depth.

K2SO4 salts in Miocene of Ukraine

Miocene salt deposits occur in the western Ukraine within two structural terranes: 1) Carpathian Foredeep (rock and potash salt) and (II) Transcarpathian trough (rock salt) (Figure 4a). These salt-bearing deposits differ in the thickness and lithology depending on the regional tectonic location (Czapowski et al., 2009). In the Ukrainian part of Carpathian Foredeep, three main tectonic zones were distinguished (Figure 4b): (I) outer zone (Bilche-Volytsya Unit), in which the Miocene molasse deposits overlie discordantly the Mesozoic platform basement at the depth of 10-200 m, and in the foredeep they subsided under the overthrust of the Sambir zone and are at depths of 1.2-2.2 km (Bukowski and Czapowski, 2009); Hryniv et al., 2007); (II) central zone (Sambir Unit), in which the Miocene deposits were overthrust some 8-12 km onto the external part of the Foredeep deposits of the external zone occur at depths of 1.0-2.2 km; (III) internal zone (Boryslav-Pokuttya Unit), where Miocene deposits were overthrust atop the Sambir Nappe zone across a distance of some 25 km (Hryniv et al., 2007).


The Carpathian Foredeep formed during the Early Miocene, located north of emerging the Outer (Flysch) Carpathians. This basin was filled with Miocene siliciclastic deposits (clays, claystones, sandstones and conglomerates) with a maximum thickness of 3 km in Poland and up to 5 km in Ukraine (Oszczypko, 2006). Two main evaporite bearing formations characterise the saline portions of the succession and were precipitated when the hydrographic connection to the Miocene ocean was severely reduced or lost (Figures 4, 5): A) Vorotyshcha Beds, dated as Late Eggenburgian and Ottnangian, some 1.1-2.3 km thick and composed of clays with sandstones, with exploitable rocksalt and potash salt interbeds. This suite is further subdivided into two subsuites: a) A lower unit, some 100-900 m thick with rock salt beds and, b) An upper unit, some 0.7-1.0 km thick, with significant potash beds, now deformed (Hryniv et al., 2007).The Stebnyk potash mine is located in this lower subset in the Boryslav-Pokuttya Nappe region, close to the Carpathian overthrust); B) Tyras Beds of Badenian age reach thicknesses of 300-800 m in the Sambir and Bilche-Volytysa units and are dominated by salt breccias and contain both rock and potash salts. Thicknesses in the Bilche-Volytsya Unit range from 20-70 m and are made up of a combination of claystones, sandstones, carbonates, sulphates and rock salts with little or no potash.


Hence, potash salts of the Carpathian Foredeep are related either to the Vorotyshcha Beds located in the Boryslav–Pokuttya zone, or to the Tyras Beds (Badenian) in the Sambir zone (Figure 5). These associations range across different ages, but have many similar features, such as large number of potash lenses in the section, mostly in folded-thrust setting, and owing to their likely Neogene-marine mother brine contain many sulphate salts, along with a high clay content. Accordingly, the main potash ore salts are kainite, langbeinite and kainite–langbeinite mixtures. Hryniv et al. (2007) note more than 20 salt minerals in the Miocene potash levels and in their weathering products. Bromine contents in halites of the Carpathian Foredeep for deposits without potash salts range from 10 to 100 ppm (on average 56 ppm); in halite from salt breccias with potash salts range from 30 to 230 ppm (average 120 ppm); and in halite from potash beds ranges from 70 to 300 ppm (average 170 ppm). In the ore minerals from the main potash deposits, bromine content ranges are: a) in kainite 800–2300 ppm; b) in sylvite 1410–2660 ppm; and c) in carnallite 1520–2450 ppm. This is consistent with kainite being a somewhat less saline precipitate than carnallite/sylvite (Figure 6).


The brines of Vorotyshcha and Tyras salt-forming basins (based on data from brine inclusions in an investigation of sedimentary halite, listed by Hyrniv et al. (2007), are consistent with mother brines of the Na–K–Mg–Cl–SO4 (MgSO4-rich) chemical type (consistent with a Neogene marine source). Inclusion analysis indicates the temperature of halite formation in the Miocene basin brines in Forecarpathian region was around 25°C. During the potash (Kainite) stages it is likely these solutions became perennially stratified and heliothermal so that the bottom brines could be heated to 40-60°C, more than double the temperature of the brine surface layer (see Warren, 2015 for a discussion of the physical chemistry and the various brine stratification styles). During later burial and catagenesis the temperatures preserved in recrystallised halites are as high as 70°C with a clear regional tectonic distribution (Hryniv et al. (2007).

Maximum potash salt production was achieved under Soviet supervision in the 1960s, when the Stebnyk and Kalush mines delivered 150 x 106 tonnes of K2O and the “New” Stebnyk salt-works some 250 x 106 tonnes as K2SO4 per year.


Stebnyk potash (Figure 7a)

The potash salt deposit in the Stebnyk ore field occurs within the Miocene (Eggenburgian) Vorotyshcha Beds (Figures 4, 5). Salt-bearing deposits in the Stebnyk area were traditionally attributed to two main rock complexes (Lower and Upper Vorotyshcha Beds) separated by terrigenous (sandstones and conglomerates) Zahirsk Beds (Petryczenko et al., 1994). More recent work indicates that the Zahirsk Beds belonged to a olistostrome horizon (a submarine slump, interrupting evaporite deposition) and there are no valid arguments for subdividing the Vorotyshcha Beds into two subunits (Hryniv et al., 2007).

There are multiple salt-bearing series in the Stebnyk deposit (Figure 4b) and their total thickness ranges up to 2,000 m in responses to intensive fold thickening and overthrusting of the Carpathians foredeep. Intervals with more fluid salt mineralogies were compressed and squeezed into the centers of synclinal folds, to form a number of elongate lens-shape ore bodies (Figure 4b). These bodies are often several hundreds meters wide and in mineable zones occur at the depth of 80-650 m, typically at 100-360 m.

The lower part of the Vorotyshcha Suite (Beds) in the Stebnyk Mine area is composed of a salt-bearing breccia, with sylvinite or carnallitite interclayers typically in its upper parts, as well as numerous blocks of folded marly clays (Bukowski and Czapowski, 2009). Above this is the potash-bearing ore series , some 10-125 m thick and, composed of beds of kainite, langbeinite and lagbeinite-kainite with local sylvinite and kieserite (Hryniv et al., 2007). The potash interval is overlain by a rock salt complex some 60 m thick (Koriń, 1994).

The Stebnyk plant is now abandoned and in disrepair. In 1983 there was a major environmental disaster (explosion) at a nearby chemical plant (in the ammonia manufacture section), which was supplied chemical feedstock by the mine. No lives were lost, but damage at the plant, tied to the explosion, released some 4.6 million cubic metres of thick brine from an earthen storage dam into the nearby Dniester River. At the time this river was probably the least environmentally damaged by industrial operations under Soviet administration. The spill disrupted water supplies to millions of people along the river, killed hundreds of tons of fish, destroyed river vegetation and deposited a million tons of mineral salts on the bottom of a 30-mile-long reservoir on the Dniester. Stebnik is located in the Ukrainian province of Lvov. Staff members at the United States Embassy at the time seized on the name to dub the incident ‘’Lvov Canal,’’ after the Love Canal contamination in the United States.

Kalush potash salt geology (Figure 7b)

Thickness of Miocene (Badenian) deposits near the Kalush Mine is around 1 km (Figures 4a). Two local salt units (beds) are distinguished within the Tyras Beds: the Kalush and Holyn suites, which constitute the nucleus of Miocene deposits of Sambir Unit (Figure 5). Beds have been overthrust and folded onto the Mesozoic and Middle to Upper Miocene molasse sediments of the outer (Bilche-Volytsya) tectonic unit (Figure 4b). The Kalush Beds are 50-170 m thick, mostly clays, with sandstone and mudstone intercalations,. In contrast the Holyn beds are more saline and dominated by clayey rock salts (30-60% of clay), salty clays and claystones (Koriń, 1994). Repeated interbeds and concentrations of potash salts up to several meters thick within the Holyn beds define a number of separate potash salt fields in the Kalush area (Figures 4b, 5). Such salt seams are dominated by several MgSO4-enriched mineralogies: kainite, langbeinite-kainite, langbeinite, sylvinite and less much uncommon carnallite and polyhalite. These polymineralogic sulphate ore mineral assemblages are co-associated with anhydrite, kieserite and various carbonates. The potash ore fields typically occur in tectonic troughs within larger synclines, usually at depths of 100-150 m, to a maximum of 800 m.

Conventional processing streams for manufacture of SOP and MOP

To date the main natural sulphate salts that have been successfully processed to manufacture sulphate of potash (SOP) are;

  • Kainite (KCl.MgSO4.3H2O) (as in Sicily - potash mines are no longer active)
  • Kieserite (MgSO4.H2O) (as in Zechstein, Germany - some potash mines active)
  • Langbeinite (K2SO4.2MgSO4) (as in Carlsbad, New Mexico - active potash mine)
  • Polymineralic sulphate ores (as in the Stebnyk and Kalush ores, Ukraine - these potash mines are no longer active)
  • All the processing approaches deal with a mixed sulphate salt or complex sulphate brine feed and involve conversion to form an intermediate doublesalt product, usually schoenite (or leonite at elevated temperatures) or glaserite. This intermediate is then water-leached to obtain SOP.

    For example, with a kainite feed, the process involves the following reactions:

    2KCl.MgSO4.3H2O --> K2SO4.MgSO4.6H2O + MgCl2

    followed by water-leaching of the schoenite intermediate

    K2SO4.MgSO4.6H2O --> K2SO4 + MgSO4 + 6H2O


    In Sicily in the 1960s and 70s, the Italian miners utilized such a solid kainitite ore feed, from conventional underground mining and leaching approaches. The various Italian mines were heavily government subsidized and in terms of a free-standing operation most were never truly profitable. The main kainitite processing technique used in Sicily, is similar in many ways to that used to create SOP from winter-precipitated cryogenic salt slurries in pans that were purpose-constructed in the North Arm area of in Great Salt Lake, Utah (Table 1; see Warren, 2015 for details on Great Salt Lake operations). The Italian extraction method required crushing and flotation to create a fine-sized kainite ore feed with less than 5% NaCl. This product was then leached at temperatures greater than 90°C with an epsomite brine and converted into a langbeinite slurry, a portion which was then reacted with a schoenite brine to precipitate potassium chloride and epsomite solids, which were then separated from each other and from the epsomite brine. A portion of the potassium chloride was then reacted with magnesium sulphate in the presence of a sulphate brine to create schoenite and a schoenite brine. This schoenite brine was recycled and the remaining potassium chloride reacted with the schoenite in the presence of water, to obtain potassium sulphate and a sulphate brine.

    The processing stream in the Ukraine was similar for the various Carpathian ore feeds, which “out-of-mine-face” typically contained around 9% potassium and 15% clay and so were a less pure input to the processing stream, compared to the typical mine face product in Sicily. Like Sicily, schoenite was the main intermediate salt. Ore was leached with a hot synthetic kainite solution in a dissolution chamber. The langbeinite, polyhalite and halite remained undissolved in the chamber. Salts and clay were then moved into a Dorr-Oliver settler where the clays were allowed to settle and were then moved to a washer and discarded. The remaining solution was crystallized at the proper cation and anion proportions to produce crystalline schoenite. To avoid precipitation of potassium chloride and sodium chloride, a saturated solution of potassium and magnesium sulfate was added to the Dorr-Oliver settler. The resulting slurry of schoenite was filtered and crystals were leached with water to produce K2SO4 crystals, which were centrifuged and recycled and a liquor of potassium and magnesium sulfates obtained. The liquid phase from the filter was recycled and added to the schoenite liquor from obtaoned by vacuum crystallization. Part of the schoenite liquor was evaporated to produce crystalline sodium sulfate, while the magnesium chloride liquid end product was discarded. The slurry from the evaporation unit was recycled as “synthetic kainite.” This process stream permitted the use of the relatively low quality Carpathian ore and produced several commercially valuable products including potassium sulfate, potassium-magnesium sulfate, potassium chloride, sodium sulfate and magnesium chloride liquors. Being a Soviet era production site, the economics of the processing was not necessarily the main consideration. Rather, it was the agricultural utility of the product that was paramount to the Soviet state.

    Can Danakhil potash be economically mined?

    For any potash deposit (MOP or SOP) there are three approaches that are used today to economically extract ore (Warren 2015): 1) Conventional underground mining. 2) Processing of lake brines 3) Solution mining and surface processing of brines. Historically, method 1 and 2 have been successfully conducted in the Danakhil Depression, although method 1) was terminated in the Dallol area by a mine flood.

    Conventional mining

    To achieve a successful conventional underground MOP potash mine any where in the world, ideally requires (Warren, 2015): 1) A low dipping, laterally continuous and consistently predictable quality ore target, not subject to substantial changes in bed dip or continuity. 2) An ore grade of 14% K2O or higher, and bed thickness of more than 1.2 m. 3) Around 8-m of impervious salt in the mine back or roof, although some potash mines, such as the Boulby mine in the UK are working with < 2 meters of salt in the back (but there the extraction is automated and the access roads approach the target ore zone from below). 4) An initial access shaft that is vertical and typically dug using ground freezing techniques to prevent unwanted water entry during excavation. 5) A typical ore depth in the range 500-1100 metres. Shallower mines are subject to unpredictable water entry/flooding and catastrophic roof collapse, as in the Cis-Urals region (see Solikamsk blog). Mines deeper than 1000-1100 metres are at the limit of conventional mining and the salt surround is subject to substantial creep and possible explosive pressure release outbursts (as in some potash mines in the former East Germany). 6) At-surface and in-mine conditions not subject to damage by earthquakes, water floods or volcanism.

    During the feasibilty phase of the Parsons Mining Project it became evident that the halite material overlying the Sylvinite Member was porous and that there was no adequate hydrologic protection layer above the Sylvinite Member. In my mind, this is further evidence of the hydrologic access needed to convert carnallite to sylvite along the bajada front (see previous blog). In any event the absence of a hydrologic protection layer above the Sylvinite Member means that conventional underground mining is not feasible for this type of potash. In addition, given the tectonic instability of the Danakhil Depression it is likely that no underground conventional mine is feasible in the hydrologically, seismically and hydrothermally active setting, which is the Danakhil depression, even if planning to exploit the deeper widespread kainitite beds (>350-450m)

    Some explorers in the Danakhil depression, especially on the Eritrean side are proposing to use surface or open-pit mining (quarrying) approaches to reach and extract/processing shallow ore salts. For this approach to be successful requires the shallow potash targets to be above regional groundwater level. Depths to the different ore targets on the Ethiopian side of the depression range between 45m and 600m and almost all lie below the regional water. Also, to access the mineralised material a large volume of variably water-saturated overburden would need to be removed. Even if areas with ore levels above the water table do exist on the Ethiopian side, the whole of the Danakhil sump is subject to periodic runoff and sheetflooding, sourced in the western highlands. Open pit areas would be regularly flooded during the lifetime of the pit, resulting in a need for extensive dewatering. For these reasons, and the possibility of earthquake damage, open pit mining is likely not feasible.

    Can the Danakhil potash be solution mined?

    To achieve this, brines extracted from different mineralogical levels and ore types will need to be individually targeted and kept as separate feeds into dedicated at-surface processing streams. On the Dallol surface, there are numerous sites that are suitable for pan construction, the climate is suitable for natural solar concentration as the region is typically dry, flat and hyperarid. If the potash zones in the Dallol depression are to be economically exploited via solution mining it will likely first require an understanding of the geometries of the 3 different forms of potash, namely; 1) Bedded kainitite-carnallitite (widespread in the depression), 2) Diagenetic sylvite via incongruent dissolution (focused by deep meteoric mixing and the bajada chemical interface along the western margin. 3) Hydrothermal potash (largely found in the vicinity of Dallol mound). Next, in order to have known-chemistry feedstocks into a SOP chemical plant, it will require the appropriate application of extraction/solution mining chemistries for each of these deposit styles. This would involve the construction of dedicated brine fields and the pumping of shallow Dallol brines (mostly from <200-250m below the surface) into a series of mineralogically-separated at-surface solar concentrator pans. 

    There are some subsurface aspects that need to be considered and controlled  in a solution mining approach in the Danakhil. The first is the possibility of uncontrolled solution cavity stoping (for example where a solution cavity blanket layer is lost due to cavity intersection with an unexpected zone of high permeability). If cavity shape is not closely monitored (for example by regular downhole sonar scans) and controlled, this could ultimately lead to the collapse of the land surface atop regions of shallow evaporites (<150-200 below the surface). As we saw in blog 3, doline collapse is a natural process in the Dallol Mound region, as it is any region of shallow soluble evaporites in contact with undersaturated pore waters. Ongoing solution via interaction with hydrothermal waters has created the colorful brine springs that attract tourists to the Dallol Mound region. But a operator does not want new dolines to daylight in their brine field, as environmental advocates would quickly lay blame at the feet of the brinefield operator. For this reason, the region in the vicinity of the Dallol Mount (eg the “Crescent deposit”) should probably be avoided.

    Most modern brinefield operators prefer a slowly-dissolving targeted salt bed that is at least 400-500m below the land surface (Warren, 2015). This broadens and lessens the intensity of the cone of ground collapse above the extraction zone and so lessens the possibility of catastrophic surface collapse. Use of a diesel rather than air blanket during cavity operation is also preferred because of potential porosity intersections at the base of the Upper Rock Salt (URF) contact (see blog 2 in the Danakhil blogs) Appropriate deeper potash beds in the Danakhil are laterally continuous beds of kainitite with lesser carnallitite. Drilling to date has identified little sylvite or bischofite in these widespread layers. This simplifies the mineral input chemistry in terms of a kainite target further out in the saltflat with a sylvite or sylvite bischofite operation closer toward the western margin, but there are no currently active solution mines solely targeting a kainite ore anywhere in the world.

    This leads to another consideration with a solution mining approach in the Danakhil depression, and that is that there are no existing brine technologies that can deal economically with high concurrent levels of magnesium and possibly-elevated sulphate levels in a recovered brine feed. The third consideration is reliably predicting the occurrence of, and avoiding, any metre- to decametre-scale brine-filled cavities that the drilling has shown are not uncommon at the sylvinite-bischofite-carnallite level in the Dallol stratigraphy along the Bajada chemistry zone. Intersecting and slowly dewatering such large brine cavities may not lead to at-surface ground collapse, but if not identified could create unexpected variations in the ionic proportions of brine feeds into the solar concentrators (for example drilling has identified subsurface regions dominated by bischofite, which is one of the most soluble bittern salts in the Danakhil depression - see Ercospan 2010, 2011 for drill result summaries).

    And so?

    So, at this stage, there are encouraging possibilities for economic recovery of both MOP and SOP from solution brines pumped to chemistry-specific solar pans in the Danakhil. Processing chemistry will require further site-specific studies to see which of the current known methods or their modification is economically feasible for SOP and perhaps combined SOP and MOP manufacture in the hyperarid climate of the Danakhil, as is being currently done by Allana Potash. It is also possible that a new processing stream chemistry could to be developed for the Dallol brines, in order to deal with very high concurrent levels of MgCl2 (widespread bischofite beds), or develop new or modify existing processing streams that target kainitite at depth. Similar K2SO4 brine processing chemistries have been applied in pans of the margins of the Great Salt Lake. But there salt pan processing was in part seasonally cryogenic, something that the Dallol climate certainly is not, so it is likely modified or new approaches to year-round pan management will be required.

    Any future potash operation in the Danakil will have to compete in product pricing with well established, high-volume low cost producers in Canada, Belarus and Russia (Figure 8). Today, establishing a new conventional underground potash mine is associated with setup costs well in excess of a billion dollars (US$). The costs are high as the entry shaft to a conventional underground mine must be completed without water entry and is usually done via ground freezing. This is the approach currently underway at BHP’s MOP Jansen Mine in Saskatchewan, Canada. Because of the very high costs involved in underground entry construction, and the well established nature of the competition, the proved amount of ore for a conventional mine should be sufficient for at least 20 years of production (subject to a given mill size, mill recovery rate for a given ore depth and the density and origin of salt “horses”). Kogel et al. (2006) states any potash plant or mill should be at capable of least 300,000 t K2O per annum in order to compete with a number of established plants with nameplate capacity in excess of 1 Mt.

    In contrast, the shallow nature of a Danakhil potash source means cheaper access costs, while a solution well approach makes for much cheaper and shorter approach times for brine/ore extraction, providing suitable economic brine processing streams are available (Figure 8). Potash is a mine product where transport to market is a very considerable cost proportion in terms of an operation's profitability. The location of the Danakhil gives it a low-cost transport advantage as a future supplier to the ever-growing agricultural markets of Africa, India and perhaps China. And finally, a potassium sulphate product has a 30% cost premium over a muriate of potash (KCl) product.

    References

    Bukowski, K., and G. Czapowski, 2009, Salt geology and mining traditions: Kalush and Stebnyk mines (Fore-Carpathian region, Ukraine): Geoturystyka, v. 3, p. 27-34.

    Czapowski, G., K. Bukowski, and K. Poborska-Młynarska, 2009, Miocene rock and potash salts of West Ukraine. y): Field geological-mining seminar of the Polish Salt Mining Society. Geologia (Przegląd Solny 2009), Wyd. AGH, Kraków, 35, 3: 479-490. (In Polish, English summary).

    Decima, A., J. A. McKenzie, and B. C. Schreiber, 1988, The origin of "evaporative" limestones: An Example from the Messinian of Sicily: Journal of Sedimentary Petrology, v. 58, p. 256-272.

    Decima, A., and F. Wezel, 1973, Late Miocene evaporites of the central Sicilian Basin; Italy: Initial reports of the Deep Sea Drilling Project, v. 13, p. 1234-1240.

    Decima, A., and F. C. Wezel, 1971, Osservazioni sulle evaporiti messiniane della Sicilia centromeridionale: Rivista Mineraria Siciliana, v. 130–132, p. 172–187.

    Garcia-Veigas, J., F. Orti, L. Rosell, C. Ayora, R. J. M., and S. Lugli, 1995, The Messinian salt of the Mediterranean: geochemical study of the salt from the central Sicily Basin and comparison with the Lorca Basin (Spain): Bulletin de la Societe Geologique de France, v. 166, p. 699-710.

    Garrett, D. E., 1995, Potash: Deposits, processing, properties and uses: Berlin, Springer, 752 p.

    Hite, R. J., and A. S. Wassef, 1983, Potential Potash Deposits in the Gulf of Suez, Egypt: Ann. Geol. Survey Egypt, v. 13, p. 39-54.

    Hryniv, S. P., B. V. Dolishniy, O. V. Khmelevska, A. V. Poberezhskyy, and S. V. Vovnyuk, 2007, Evaporites of Ukraine: a review: Geological Society, London, Special Publications, v. 285, p. 309-334.

    Koriń, S. S., 1994, Geological outline of Miocene salt-bearing formations of the Ukrainian fore-Carpathian area (In Polish, English summary): Przegląd Geologiczny, v. 42, p. 744-747.

    Lowenstein, T. K., L. A. Hardie, M. N. Timofeeff, and R. V. Demicco, 2003, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines: Geology, v. 31, p. 857-860.

    Lowenstein, T. K., M. N. Timofeeff, S. T. Brennan, H. L. A., and R. V. Demicco, 2001, Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions: Science, v. 294, p. 1086-1088.

    Lugli, S., 1999, Geology of the Realmonte salt deposit, a desiccated Messinian Basin (Agrigento, Sicily): Memorie della Societá Geologica Italiana, v. 54, p. 75-81.

    Lugli, S., and T. K. Lowenstein, 1997, Paleotemperatures preserved in fluid inclusions in Messinian halite, Realmonte Mine (Agrigento, Italy): Neogene Mediterranean Paleoceanography, 28–30 September 1997, Erice. Abstract volume, 44–45.

    Lugli, S., B. C. Schreiber, and B. Triberti, 1999, Giant polygons in the Realmonte mine (Agrigento, Sicily): Evidence for the desiccation of a Messinian halite basin: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 69, p. 764-771.

    Manzi, V., S. Lugli, M. Roveri, B. C. Schreiber, and R. Gennari, 2011, The Messinian "Calcare di Base" (Sicily, Italy) revisited: Geological Society of America Bulletin, v. 123, p. 347-370.

    Notholt, A. J. G., 1983, Potash in Developing Countries, in R. M. McKercher, ed., Potash '83; Potash technology; mining, processing, maintenance, transportation, occupational health and safety, environment, p. 29-40.

    Oszczypko, N., P. Krzywiec, I. Popadyuk, and T. Peryt, 2006, Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary, Structural, and Geodynamic Evolution, in J. Golonka, and F. J. Picha, eds., The Carpathians and their foreland: Geology and hydrocarbon resources, The American Association of Petroleum Geologists Memoir, v. 84, p. 293-350.

    Petryczenko, O. I., G. M. Panow, T. M. Peryt, B. I. Srebrodolski, A. W. Pobereżski, and K. W.M., 1994, Outline of geology of the Miocene evaporite formations of the Ukrainian part of the Carpathian Foredeep (In Polish, English summary): Przegląd Geologiczny, v. 42, p. 734-737.

    Roveri, M., S. Lugli, V. Manzi, and B. C. Schreiber, 2008, The Messinian Sicilian stratigraphy revisited: new insights for the Messinian salinity crisis: Terra Nova, v. 20, p. 483-488.

    Warren, J. K., 2015, Evaporites: A compendium (ISBN 978-3-319-13511-3) Released August 2015: Berlin, Springer, 1600 p.

    Danakhil Potash; Ethiopia - Modern hydrothermal and deep meteoric KCl, Part 3 of 4

    John Warren - Friday, May 01, 2015

    So far we have discussed the modern salt pan geology of the Danakhil (Part 1 of 4) and the initial subaqueous setting for widespread bedded potash, now in the subsurface, mostly as a kainitite bed (Part 2 of 4). In this blog we will discuss examples of potash in the Danakhil where remobilised salts and brines are related to the circulation of hydrothermal and meteoric fluids have facilitated localised reworking of potash to the surface (part 3 of 4). These fluids are related to the thermal anomalies created by the emplacement of the Dallol mound and the chemical front created by the encroachment of the Bajada along the western margin of the saltflat. Notably, we shall see the Dallol Mound is not a volcanic cone, rather it is an anticlinal dome of uplifted and eroded bedded salt, capped and surrounded by hydrothermal crater features typified by karst pools and brine outflows. Its creation is likely related to emplacement of igneous material at depth but, as yet there, has been no breakout of volcanic rock material in the mound area. This has important economic implications for the nature of remobilised potash and the creation of potential potash ores in the Dallol Mound area, these cosiderations are separate from the regional distribution of primary potash beds (kainitite and carnallitite) that were discussed in the previous blog.


    Thermal brine springs and potash occurrences near Dallol mound

    Today, hot springs supply and maintain a number of hydrothermally-fed brine pools and brine filled karst lakes in various depressions both atop and near the regional anticlinal salt mound or salt dome, sometimes called Dallol Mountain (Figure 1). As it only rises some 60 metres from the surrounding surface (-81 m versus -120 m) the term mountain is a misnomer. The highly dissected and eroded slope of bedded halite that is the southwest margin of Dallol mound shows the various springs are active in a region of uplifted and eroded bedded evaporite that defines the Dallol mound (Figure 2a). For example, brine springs still supply a small carnallite deposit known as the Crescent deposit located near the uplifted black halite beds that define Black Mountain and located 1.5 km southwest of Dallol mound (Figure 2b). This potash ore is the result of hydrothermally-driven groundwater activity, likely related to the emplacement of the Dallol Mound. The uplift-related thermal hydrology has broken up the mineralogical continuity of the nearsurface evaporite beds including the equivalents to the potash-rich Houston Fm.


    The Black Mountain potash deposits caught the attention of the Houston-based  Ralph M. Parsons company in 1954 where, according to Holwerda and Hutchinson, 1968, potash mining had previously already taken place at the Crescent carnallite/sylvite deposit. Earlier extraction had involved, amongst other techniques, flooding of salt pans around a continuously flowing hot spring, followed by harvesting of potash-rich salts, once natural deliquescence had flushed most of the highly soluble MgCl2 from the system. A concession was obtained Parsons linked to obligations to investigate the various potash deposits in the area, some of which were tied to actual outcrops of potash salts. The Parsons Company set up its base on Dallol Mountain at a site previously occupied by the Italian mining community, which had operated in the first few decades of last century (Figure 2a; the modification and reuse of older salt brick buildings is still evident on the ground today). As well, Parsons Co. constructed airstrips on Dallol Mountain and in the Musley area. They drilled more than 300 holes in order to better understand the the distribution of the potash beds. Drilling operations in 1959-1961 led to the delineation of the small localized "Crescent" carnallitite deposit in the vicinity of Black Mountain . This was followed by the discovery of the much larger (>80 million tonnes) "Musley" sylvite deposit near the base of the Ethiopian Highlands, some 5km W of Dallol, and extending at least 10km in a N-S orientation. A 92m vertical shaft and a total of 805m of drives were made in this deposit, but all work was stopped in 1967 after rapid influx of water into the conventional mine killed a number of workers. The political tensions in the area at the time probably also played a part in preventing mining activity in the following years.

    Holwerda and Hutchinson (1968) argue that geographical location of the main "Musley" sylvite strata is directly west of Dallol Mound and at the base of the highlands. This, and the fact that sylvite is an alternation product that consistently overlays the carnallite strata and thickens (although discontinuously) along the western margin (see drill hole intersections published in Ercosplan, 2011), suggests that the potash enrichment was produced by selective leaching of MgCl2 from a carnallite precursor, driven by phreatic run-off waters sourced in the Ethiopian highlands. My own observations and plotting of enrichment fairways (using published Ercosplan 2010, 2011 data) confirms Holwerda and Hutchinson’s inferences. If diagenesis, not primary precipitation, is the prime mechanism of sylvite creation in the Musley region, then the regional sylvite control/distribution for this style of enrichment is related to a subsurface meteoric/groundwater phreatic overprint that parallels the encroaching bajada edge. It is a separate ore fairway to the more regional easterly dipping bedded kainitite/carnallitite trend.

    Waters in some of the active brine-filled hydrothermal craters and dolines can locally have temperatures of more than 100°C and when waters cool they precipitate varying combinations of halite, carnallite and bischofite. The brines are so saturated with salts that if a stick is thrust into a boiling brine pool and removed it is immediately covered by layer of carnallite or bischofite and halite (Figure 2b, c). The same pools are also rich in FeCl2, sulphur and manganese, which explains the spectacular bright green, red-orange and yellow colours of many of the saline mineral assemblages precipitating in and about these active spring-formed pools. Occasional intense storm-driven sheetfloods can drive renewed activity in the various springs in vicinity of the mound, as happened in the recent floods of February 2011, when the intensity of water circulation and the areal extent of the pools greatly increased. After the same storm flood, a natural collapse doline tens of metres across formed on the western depression margin. Clearly, the local hydrothermal/karstic enhancement style of bittern enrichment is a separate process set for potash enrichment compared to the widespread earlier deposition of marine-fed subaqueous kainite. Hence, it contrasts with the much more widespread set of depositional/early diagenetic processes that laid down the bulk of the bedded potash association that is the Houston Fm. in the Danakhil Depression (as discussed in the previous Danakhil blog).

    What is the Dallol Mound and what drives its uplift hydrology?

    Despite the widespread misconception that the Dallol mound is a lava cone, Mount Dallol is not a volcanic-centered feature on the Danakhil landscape. A visit to the area reveals no observable volcanic products (lava, ashfall or scoria) on the surface on or near the Dallol mound. This is so even in the region of the most recent phreatic activity in 1926 where a 30 m-diameter phreatic (explosion? or daylighting hydrothermal karst) crater formed, hosted in salt beds (Figure 2b). All the rocks associated with this cavity and its formative event are not volcanic. This means the mechanism that created the Dallol Mound is unlike the magmatic events that created the world famous Erte Ale volcanic cone, with its distinctive longterm active magma lake and located some 80 km to the south of Dallol and still in the Danakhil depression. Instead, the Dallol mound crest is made up of uplifted and eroded halite and potash beds soaked in a thermal hydrology that breaks out on the lake surface as a number of hot bubbling sulphurous brine pools. This is also true of the off-mound crater that formed in 1926 near Black Mountain and still retains bubbling brines with present temperatures ~65-70 °C. Nearby “Black Mountain” is a small area of dark coloured bedded and recrystallised halite, it is not a primary volcanic feature.

    As a sedimentologist visiting the area, I wondered at why the Dallol mound features had ever been called volcanic cones, hornitos, or maars (as they are widely described in the literature). To use such genetic terms in a geologically correct fashion I would like to put my hand on a piece of volcanic debris (lava, pumice, scoria or ash) in any of the craters before I call the Dallol mound a volcanic cone. And yet, many workers in the published literature dealing with the Dallol area are happy to do this. I am not saying there is no influence of magmatic heating in forming Dallol Mound, only that molten volcanic rock has yet to surface in the immediate Dallol region. Hence it is unlike the many actual volcanic cones, maars and hornitos to the south and north and this is an significant observation as it deals with mechanism of local potash enrichment. I will argue in the next section that this is because Dallol Mound is a salt uplift feature or dome capped by phreatic cone/ hydrothermal karst structures and all related to the migration of molten magma into more deeply buried salt beds, which contain hydrated salts at the level of the Houston Fm and perhaps even deeper buried hydrated salt layers (see blog 2).

    Darrah et al (2013) and Detay (2011) argue that the 30m diameter 1926 crater and other nearby pools on the Dallol saltflat in the vicinity of the Dallol mound are the result of a phreatic explosions, tied to the increasing gas pressure in superficial hydrothermal reservoirs atop a deeper mass of molten rock. The mound is a landscape feature indicative of deep dyke/sill intrusion that did not surface. According to Holwerda and Hutchinson (1968) this yet-to-daylight dyke complex explains the linear orientation of the mound, its pools and other karst/erosion features on the salt flat surface in vicinity of the Dallol mound. That is, the various Dallol hot springs typically consist of 30-40m diameter circular to sub-circular ponds, initially formed by explosive vapor eruptions, to form at-surface circular features, which are widely termed maars, although I would prefer to call them "maar-like." A “maar” is defined in the AGI Glossary of Geology as “a low relief, broad volcanic crater formed by multiple shallow explosive eruptions. It is surrounded by a crater ring, and may be filled by water. Type occurrence is in the Eifel area of Germany.” Given the lack of a volcanic crater rim the Dallol Mound and adjacent brine-filled cavities are not really maars, nor are they hornitos. They will likely evolve into such features, but in their current state better considered brine-filled fumaroles or solfateras or even better, hydrothermal karst cavities that have daylighted. Once the cavities have broken out onto the salt flat surface, these circular (possibly-explosive) features can continue enlarge due to ongoing rise of undersaturated waters and so evolve into expanding hydrothermal karst pools or they can be partially to completely filled with saline precipitates (with no volcanic products derived from molten igneous rock materials).


    So, instead of at-surface volcanic products such as lava and ashfall, most of the superficial precipitates/sediments observed in and around the various on- and off-structure Dallol brine pools are evaporite salts, along with some remnants of older clay-sediments. Brine fluids in various hot spring pools in the Dallol area (in the Dallol “hill” crest and the “Crescent” region near Black mountain, and in the “Boiling Lake” region south of the mound) are typically multi-coloured warm/hot ponds (Figure1, 3; Gebresilassie et al., 2011). The various pools are extremely salty (>500g/L), can be highly acidic (sometimes with a pH approaching 0.5), and gas-rich (as evidenced by steady, vigorous bubbling of gases). According to Darrah et al. (2013) the Dallol “salt dome” fluids and associated hot springs are hypothesized to result from the interaction between hot mantle fluids or basalt dyke injections with evaporite deposits at unknown depths. However, direct observations of the volumes of pool waters and the vigour of the outflow are known to increase after the occasional heavy rain event, as happened in February, 2011. Hence, it is unclear if sulfur-rich gases and the low pH brine fluids provide evidence of the interaction of hot mantle fluids with the evaporites (as inferred by Darrah et al., 2013) or the pool waters are, at least in part, related shallower ongoing hydrothermal/karst interactions with more deeply circulated meteoric waters sourced in the 1000-m high adjacent rift highlands.

    Why hydrated salts are important in some salt-hosted thermal systems: a Permian Zechstein analog

    Most published volcanogenic-related studies of the Dallol Mound have not considered the effects of hydrated salt layers in a situation of rising molten rock, where the country rock contains beds of hydrated evaporites such as kainite or carnallite. This situation is exposed in the dyke-intruded halite-carnallite levels in the mines of the Werra-Fulda mine district of Germany (Schoefield et al., 2013; Warren, 2015). There, the Permian Zechstein salt series contains two important potash salt horizons (2-10m thick), which are mined at a depths ≈ 800 m from within a 400m thick halite host (Figure 4a). In the later Tertiary, basaltic melts intruded these Zechstein evaporites, but only a few dykes reached the Miocene landsurface. Basaltic melt production was related to regional volcanic activity some 10 to 25 Ma. Basalts exposed in the mine walls are typically subvertical dykes, rather than sills. These basaltic intervals can crosscut the salt over zones up to several kilometres wide (Figure 4b). However, correlations of individual dyke swarms, between different mines, or between surface and subsurface outcrops, is difficult.


    The basalts are phonolitic tephrites, limburgites, basanites and olivine nephelinites. Dyke margins in contact with halite are usually vitrified, forming a microlitic limburgite glass along dyke edges (Knipping, 1989). At the contact on the evaporite side of the glassy rim there is a cm-wide carapace of high temperature salts (mostly anhydrite and ferroan carbonates). Further out, the effect of the high temperature envelope is denoted by transitions to clear halite, with higher temperature fluid inclusions (Knipping 1989). All of this centimetre to metre-scale alteration is an anhydrous alteration halo, the salt did not melt (halite’s melting temperature is 804°C), rather than migrating, the fluid driving recrystallisation was largely from local movement of entrained brine inclusions. The dolerite/basalt interior of the basaltic dyke is likewise altered and salt soaked, with clear, largely inclusion-free halite typically filling vesicles in the basalt.

    Worldwide, dykes intersecting salt beds tend to widen to become sills in two zones: 1) along evaporite units within the halite mass that contain hydrated salts, such as carnallite or gypsum and, 2) where rising magma has ponded and so created laccoliths at the upper or lower halite contact with the adjacent nonsalt strata or against a salt wall (Warren, 2015). The first is a response to a pulse of released water as dyke-driven heating forces the dehydration of hydrated salt layers. The second is a response to the mechanical strength contrast at the salt-nonsalt contact. The first is what is observed in the Fulda region and is also likely relevant to the formation of the Dallol Mound and its remobilised potash-precipitating brines.

     

    In such subsurface regions, the heating of hydrated salt layers (such as carnallite or kainite), adjacent to a dyke or sill, drives off the water of crystallisation (chemical or hydration thixotropy) at a much lower temperatures than that at which anhydrous salts, such as halite or anhydrite, thermally melt (Table 1). In the Fulda region the thermally-driven release of water of crystallisation within particular Zechstein salt beds creates thixotropic or subsurface “peperite” textures in carnallitite ore layers, where heated water of crystallisation escaped from the hydrated-salt lattice. Dehydration-driven loss of mechanical strength focuses zones of magma entry into particular horizons in the salt mass, wherever hydrated salt layers were intersected (Figure 4c verses 4d). In contrast, dyke and sill margins are much sharper and narrower in zones of contact with anhydrous salt intervals (Figure 4b; Schofield et al., 2014).

    Accordingly, away from immediate vicinity of the direct thermal aureole, heated and overpressured dehydration waters can enter a former Zechstein carnallite halite bed, and drive the creation of extensive soft sediment deformation and [1]peperite textures in the former hydrated layer (Figure 4d, e). Mineralogically, sylvite and coarse recrystallised halite dominate the salt fraction in the peperite intervals/beds. These are evaporite-related beds formed within a hydrated salt bed and so differ from the common notion of volcanic peperites indicating water-saturated sediment intercations with very shallow dyke or sill emplacements. Sylvite in these altered zone is a form of dehydrated carnallite, not a primary-textured salt. In the Fulda region, such altered zones and deformed units can extend along former carnallite layers to tens or even a hundred or more metres from the dyke feeder. Ultimately, the deformed potash bed passes laterally out into the unaltered bed, which retains abundant inclusion-rich primary chevron halite and carnallite (Figure 4d versus 4e). That is, nearer the basalt dyke, the carnallite is largely transformed into inclusion-poor halite and sylvite, the result of incongruent flushing of warm saline fluids mobilized from the hydrated carnallite crystal lattice as it was heated by dyke emplacement. During Miocene salt alteration/thermal metamorphism in the Fulda region, NaCl-fluids were mixed with fluids originating from thermally-mobilised crystallisation water in the carnallite, as it converted to sylvite.

    In the Dallol depression I think it is highly likely that a similar set of destabilisation processes occurred when rising dyke magma reached the levels of hydrated salts (kainite and carnallite beds) in the Houston Formation of the Danakhil fill, after passing relatively passively through the Lower Rocksalt Formation (see the previous blog). Emplacement of the magma/dyke into  hydrated evaporites in the vicinity of what is now the Dallol mound would have mobilised and deformed the hydrated salt level, converting carnallite to sylvite, kainite to bischofite and lesser kieserite, as well as creating widespread cavities filled with pressured volatiles carried by MgCl and KCl brines. Once these hydrothermal cavities dissolve their way to surface, the feeder brines can cool and precipitate as prograde salts such as halite, sylvite and perhaps bischofite. Such destabilisation would have accommodated the emplacement of a basaltic sill at the level of the potash salts, in turn driving the uplift of the lake beds above this region. Mound-related uplift and hydrothermal activity then drives the formation of natural regions of ground collapse, sulphurous and acidic springs and fumaroles, along with the creation of water-filled chimneys and doline sags, filling with various hydrothermal salts, in the vicinity of the volcanic mound.

    Implications for Potash distribution in the Danakhil Depression

    The discussion of potash mineral-forming processes in this and the previous blog clearly underlines a trichotomy in the way potash has accumulated in halite host-beds across the Danakhil Depression. The most widespread form of potash in the Danakhil Depression is as a primary evaporite bed, composed of primary marine kainitite precipitates with a carnallite cap (Houston Formation). Across the western side of the depression this easterly dipping bed is now buried beneath 30-150 m of overburden salts. It likely precipitated as a marine seepage-fed bittern layer, at a time the Danakhil depression was hydrographically isolated from a direct surface connection with the Red Sea. Its brine hydrology was dominantly subaqueous and not unlike that of modern Lake Asal in Djibouti, although it was more saline than Asal in the subaqueous potash sump areas. Thus, the Danakhil potash bed (Houston Fm) formed sometime ago, its formative hydology is no longer present in the depression and it may be as old as Pliocene or more likely early to mid Pleistocene. There has been sufficient time for this bed to tilt toward the east. The unit is underlain by the subaqueous Lower Rocksalt Formation (LRF) and subsequently overlain by the Upper Rocksalt Formation (URF). Both these halite formations do not entrain primary potash beds. The LRF contains numerous CaSO4 layers, while the URF contains clayey laminite beds and locally hosts regions of remobilised potash salts. The URF evolves upward into the saltflat/ephemeral lake hyperarid hydrology that typifies the modern depression.

    More localised forms of potential potash ore typify occurrences in the Dallol and Musley areas (Figure 2a). There potash in the Dallol Mound region is hydrothermally reworked from the uplifted equivalents of the Houston Formation. Even today this hydrology is precipitating carnallitite (associated with bischofite and minor kieserite) in various hydrothermal brine pools atop and around the Dallol Mound, such as the carnallite-dominant Crescent deposit (Figure 2b). These hydrothermal salts owes their origins to daylighting of pressurised fluid systems and cavities. They were created by the volatile products of hydrated salt layers (Houston Fm) where these salts had come into contact with thermal aureoles or actual lithologies of newly emplaced dykes that had penetrated the underlying halite section. Actual molten volcanic rock has yet to make it to the surface in the Dallol Mound region, although active volcanic mounds and flows do typify the saltflat surface tens of kilometres to the south (Erte Alle ) and north. Based on the analogy exposed within the Zechstein-hosted potash mines of the Fulda region of Germany, it is likely that as well as creating at-surface brine pools, this hydrothermal dyke-related hydrology converts any carnallitite to a sylvinite bed at the level of contact with the Houston Fm. 

    Then there is the deep-meteoric alteration system that is altering the kainitite/carnallitite of Houston Fm into sylvinite, it is active along the deep meteoric alteration front located at the irregular interface between the downdip end of the Musley Fan and the updip portion of the Houston Fm. This diagenetic mechanism formed the Musley potash deposit, defined and exploited by the Parsons Company operations and documented in Holwerda and Hutchison (1968). Variations on this deep-meteoric alteration theme likely extend south and north of the Musley fan, wherever the active phreatic hydrology of the bajada located at the foot of the Ethiopian Highlands interacts and interfingers with the updip edge of the easterly dipping Houston Formation.

    Once again there is no "one-size-fits-all) model for economic potash understanding (Warren, 2010, 2015). Even in what is probably the youngest known marine-fed potash system in the world, the original potash mineralogy and distribution has been altered and locally upgraded via diagenetic interactions with hydrothermal or deep-meteoric fluids. Predicting ore distributions in this, and all potash systems worldwide, requires an understanding of formative process evolution through deep time, and not just the simple application of a layer-cake primary stratigraphic model. 

    References

    Carniel, R., E. M. Jolis, and J. Jones, 2010, A geophysical multi-parametric analysis of hydrothermal activity at Dallol, Ethiopia: Journal of African Earth Sciences, v. 58, p. 812-819.

    Darrah, T. H., D. Tedesco, F. Tassi, O. Vaselli, E. Cuoco, and R. J. Poreda, 2013, Gas chemistry of the Dallol region of the Danakil Depression in the Afar region of the northern-most East African Rift: Chemical Geology, v. 339, p. 16-29.

    Detay, M., 2011, Le DALLOL revisité: entre explosion phréatomagmatique, rifting intra-continental, manifestations hydrothermales et halocinèse: LAVE. Liaison des amateurs de volcanologie européenne, v. 151, p. 7-19.

    ERCOSPLAN, 2010, Techical report and current resource estimate: Danakhil Potash Deposit, Afar State, Ethiopia: Project Reference: EGB 08-024.

    ERCOSPLAN, 2011, Preliminary Resource Assessment Study, Danakhil Potash Deposit, Afar State, Ethiopia: G & B Property: Project Reference: EGB 10-030.

    Gebresilassie, S., H. Tsegab, and K. Kabeto, 2011, Preliminary study on geology, mineral potential, and characteristics of hot springs from Dallol area, Afar rift, northeastern Ethiopia: implications for natural resource exploration: Momona Ethiopian Journal of Science, v. 3, p. 17-30.

    Holwerda, J. G., and R. W. Hutchinson, 1968, Potash-bearing evaporites in the Danakil area, Ethiopia: Economic Geology, v. 63, p. 124-150.

    Knipping, B., 1989, Basalt intrusions in evaporites: Lecture Notes in Earth Sciences (Springer-Verlag), v. 24, p. 132 pp.

    Schofield, N., I. Alsop, J. Warren, J. R. Underhill, R. Lehné, W. Beer, and V. Lukas, 2014, Mobilizing salt: Magma-salt interactions: Geology.

    Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217-268.

    Warren, J. K., 2015, Evaporites: A compendium (ISBN 978-3-319-13511-3) Released August 2015: Berlin, Springer, 1600 p.

    ------------------------- 

    [1] Peperite is a sedimentary rock that contains fragments of igneous material and is formed when magma comes into contact with wet water-saturated sediments. 


    Recent Posts


    Tags

    Ceres Enceladus causes of glaciation Stebnyk potash Large Igneous Magmatic Province evaporite-metal association methanogenesis Neoproterozoic Oxygenation Event solikamsk 2 blowout Neoproterozoic York (Whitehall) Mine Prairie Evaporite nacholite well logs in evaporites Zaragoza collapse doline evaporite dissolution astrakanite lithium carbonate Bathymodiolus childressi lapis lazuli mass die-back salt tectonics Mulhouse Basin source rock Seepiophila jonesi organic matter Lake Peigneur Deep seafloor hypersaline anoxic lake Europe evaporite ancient climate perchlorate Magdalen's Road Dallol saltpan Mega-monsoon halokinetic RHOB doline MOP SedEx sulfate Pilbara water in modern-day Mars vadose zone Dead Sea caves MgSO4 depleted sedimentary copper Badenian halotolerant Mixing zone Lop Nor deep meteoric potash Belle Isle salt mine Boulby Mine circum-Atlantic Salt Basins seawater evolution potash ore Clayton Valley playa: halite Koeppen Climate extrasalt lazurite halophile NPHI log Muriate of potash marine brine cryogenic salt Kara bogaz gol Gamma log lunette Stebnik Potash hydrothermal karst retrograde salt eolian transport gem tachyhydrite deep seafloor hypersaline anoxic basin North Pole Danakhil Depression, Afar Mars Jefferson Island salt mine Quaternary climate Mesoproterozoic stable isotope gas outburst High Magadi beds Zabuye Lake hydrohalite 18O sinkhole Phaneozoic climate vanished evaporite causes of major extinction events capillary zone Hell Kettle sinjarite Lop Nur hectorite MgSO4 enriched Density log Hadley Cell lithium battery vestimentiferan siboglinids Lamellibrachia luymesi Noril'sk Nickel geohazard Sulphate of potash well blowout jadarite NaSO4 salts sulphate oil gusher Deep dark salt supercritical phase hydrothermal anhydrite waste storage in salt cavity lot's wife 13C enrichment Lake Magadi freefight lake End-Cretaceous salt leakage, dihedral angle, halite, halokinesis, salt flow, Kalush Potash End-Triassic allo-suture non solar heating salts anomalous salt zones halocarbon extraterrestrial salt LIP white smokers Weeks Island salt mine sepiolite hydrogen Evaporite-source rock association hydrothermal potash black salt alkaline lake Stolz diapir HYC Pb-Zn magadiite anthropogenically enhanced salt dissolution carbon oxygen isotope cross plots authigenic silica evaporite karst methanotrophic symbionts K2O from Gamma Log Belle Plain Member salt ablation breccia kainitite base metal Archean gassy salt trona subsidence basin stevensite carnallitite SOP brine evolution Realmonte potash Beebe hydrothermal field climate control on salt phreatomagmatic explosion cauliflower chert Warrawoona Group hydrothermal halite McMurdo Sound endosymbiosis crocodile skin chert Schoenite Hyperarid Messinian silica solubility Thiotrphic symbionts antarcticite Atlantis II Deep Catalayud Hadley cell: Salar de Atacama methane saline giant namakier Red Sea sulfur silicified anhydrite nodules phreatic evaporite Great Salt Lake Proterozoic halite-hosted cave McArthur River Pb-Zn intrasalt Paleoproterozoic Oxygenation Event Lomagundi Event cryogenic spring salts Pangaea chert halogenated hydrocarbon nuclear waste storage Precambrian evaporites ozone depletion H2S Corocoro copper Patience Lake member water on Mars sodium silicate salt seal DHAL auto-suture salt suture well log interpretation knistersalz Karabogazgol brine pan dissolution collapse doline dihedral angle salt mine brine lake edge African rift valley lakes Sumo Ingebright Lake Crescent potash Ethiopia bischofite supercontinent Neutron Log bedded potash salt trade zeolite CO2 CaCl2 brine 18O enrichment intersalt mummifiction anthropogenic potash Prograde salt supercritical halite Dead Sea saltworks MVT deposit natural geohazard Dead Sea karst collapse Musley potash Ure Terrace End-Permian nitrogen Five Island salt dome trend gypsum dune rockburst saline clay solar concentrator pans salt karst gas in salt evaporite-hydrocarbon association carbon cycle salting-out palygorskite seal capacity recurring slope lines (RSL) snake-skin chert sulphur Platform evaporite phreatic explosion flowing salt GR log Calyptogena ponderosa meta-evaporite hydrological indicator Ripon mine stability wireline log interpretation potash ore price venice DHAB SO2 salt periphery mirabilite Ganymede CO2: albedo 13C potash Turkmenistan lithium brine epsomite basinwide evaporite Koppen climate

    Archive