Salty Matters

The Blog is written by me, John Warren. Once every three or four weeks or so I will post an article or two on an evaporite topic that has piqued my interest. On the Saltwork Publications webpage (under "the Works") there is a growing library of pdfs and epubs based on these blogs. These articles on the website have much higher resolution extractable graphics in than in the blog. There is also a link to this set of pdfs and epubs on the home page (www.saltworkconsultants.com).

Danakil potash: K2SO4 across the Neogene: Implications for Danakhil potash, Part 4 of 4

John Warren - Tuesday, May 12, 2015

How to deal with K2SO4

In this the fourth blog focusing on Danakhil potash, we look at the potash geology of formerly mined Neogene deposits in Sicily and the Ukraine, then compare them and relevant processing techniques used to exploit their K2SO4 ore feeds. This information is then used to help guide a discussion of processing implications for potash extraction in the Danakhil, where kainite is the dominant widespread potash salt. As seen in the previous three blogs there are other potash mineral styles present in the Danakhil, which constitute more restricted ore fairways than the widespread bedded kainaite, these other potash styles (deep meteoiric -blog 2 of 4 and hydrothermal - blog 3 of 4), could be processed to extract MOP, but these other potash styles are also tied to high levels of MgCl2, which must be dealt with in the brine processing stream. The most effective development combination is to understand the three occurence styles , define appropriate specific brine processing strams and then combine the products in an single processing plant and then produce sulphate of potash (SOP), rather the Muriate of Potash (MOP), as SOP has a 30% price premium in current potash markets.

Kainite dominated the bedded potash ore feed in former mines in the Late Miocene (Messinian) sequence in Sicily and the Middle Miocene (Badenian) sequence in the Carpathian foredeep], Ukraine. Kainite also occurs in a number of potash deposits in the Permian of Germany and Russia. In Germany a combination of mined sylvite and kieserite is used to manufacture sulphate of potash (SOP). Interestingly, Neogene and the Permian are times when world ocean waters were enriched in MgSO4 (Lowenstein et al., 2001, 2003). In contrast, much of the Phanerozoic was typified by an ocean where MgSO4 levels were less. It is from such marine brine feeds that most of the world’s larger Phaneorzoic (SOP) potash ore deposits were precipitated (Warren, 2015). SOP is also produced from Quaternary Lake brines in China and Canada (see cryogenic salt blog; 24 Feb. 2015).

SOP in Messinian evaporites, Sicily

A number of potash mines on the island extracted kainitite from the late Miocene Solofifera Series of Sicily (Figure 1). The last of these mines closed in the mid-1990s, but portions of some are maintained and are still accessible (eg Realmonte mine). The halite-hosted potash deposits are isolated ore bodies within two generally parallel troughs, 115 km long and 5- 10 km wide, within the Caltanissetta Basin (Figure 1). They are separated by a thrust-related high 11-25 km wide and capped by the limestones of the “Calcare di Base”. Kainite is the dominant potash mineral in the mined deposits. Across the basin, ore levels constitute six layers of variable thickness, with a grade of 10%-16% K2O (pure kainite contains 18.9% K20), with very little insoluble content (0.4%-2.0%).

At the time the potash was deposited there was considerable tectonic activity in the area (Roveri et al. 2008, Manzi et al., 2011). Host sediments were deposited in piggy-back basins some 5.5 Ma atop a series of regional thrusts, so the ore layers have dips in the mines ranging up to 60° (Figure 2). Little if any of the limestone associated with the deposits was converted to dolomite, nor was the thick Messinian gypsum (upper and lower units), encasing the halite /kainitite units, converted to anhydrite, it remains as gypsum with well preserved depositional textures. However, the elevated salinities, and perhaps temperatures, required for kainite precipitation means anhydrite micronodules, observed in some ore levels, may be primary or syndepositional. A lack of carnallite, along with isotopic data, indicates that when the deposits were formed by the evaporation of the seawater, salinities did not usually proceed far past the kainite crystallization point (in contrast to Ethiopia where carnallite salinities typify the later stages of kainitite deposition)..

 

The largest Sicilian ore body was at Pasquasia, to the west of Calanisseta, covering a 24 km2 area at depths of 300-800 m (Figure 1). There were five ore beds at Pasquasia, all with highly undulating synclinal and anticlinal forms. The Number 2 bed was the thickest, averaging perhaps a 30-m thickness of 10.5% to 13.5% K2O ore. The Pasquasia Mine was last operational from 1952 to 1992.

 

Ore geology remains somewhat more accessible at the former Realmonte mine, near the town of Agrigento. There, four main depositional units (A to D from base to top) typify the evaporite geology. As at Pasquasia, kainitite was the targeted ore within a Messinian evaporite section that has total thickness of 400-600 m. As defined by Decima and Wezel, 1971, 1973; Decima, 1988, Lugli, 1999, the Realmonte mine section is made up of 4 units (Figure 2a):

- Unit A (up to 50 m thick): composed of evenly laminated grey halite with white anhydrite nodules and laminae that pass upward to grey massive halite beds.

- Unit B (total thickness ≈100 m): this potash entraining interval is dominated by massive even layers of grey halite, interbedded with light grey thin kainite laminae and minor grey centimetre-scale polyhalite spherules and laminae, along with anhydrite laminae; the upper part of the unit contains at least six light grey kainite layers up to 18 m-thick that were the targeted ore sequence. Unlike the Danakil, carnallite does not typify the upper part of this marine potash section. The targeted beds are in the low-angle dip portion of a thrust-folded remnant in a structural basin (Figures 2b, 3).

- Unit C (70-80 m thick): is made up of white halite layers 10-20 cm thick, separated by irregular dark grey mud laminae and minor light grey polyhalite and anhydrite laminae (Figure 3).

- Unit D (60 m thick): is composed of a grey anhydritic mudstone (15-20 m thick), passing up into an anhydrite laminite sequence, followed by grey halite millimetre to centimetre layers intercalated with white anhydrite laminae.


According to Lugli, 1999, units A and B are made up of cumulates of well-sorted halite plate crystals, up to a few millimeters in size. Kainite typically forms discrete laminae and sutured crystal mosaic beds, ranging from a thickness of few mm to a maximum of 2 m, intercalated and embedded within unit B (Garcia-Veigas et al., 1995). It may also occur as small isometric crystals scattered within halite mosaics. Kainite textures are dominated by packed equant-granular mosaics, which show possible pressure-dissolution features at some grain boundaries. The associated halite layers are dominantly cumulates, which show no evidence of bottom overgrowth chevrons, implying evaporite precipitation was a “rain from heaven” pelagic style that took place in a stratified permanently subaqueous brine water body, possibly with a significant water depth to the bottom of the permanent lower water mass.

Only the uppermost part of potash bearing portion of unit B shows a progressive appearance of large halite rafts along with localized dissolution pits filled by mud, suggesting an upward shallowing of the basin at that time. In many parts of the Realmonte mine spectacular vertical fissures cut through the topmost part of unit B at the boundary with unit C, suggesting desiccation and subaerial exposure at this level (Lugli et al., 1999).

The overlying unit C is composed of cumulates of halite skeletal hoppers that evolve into halite chevrons illustrating bottom growth after foundering of the initial halite rafts. Halite layers in unit C show numerous dissolution pits filled by mud and irregular truncation of the upper crystal terminations, implying precipitation from a nonstratified, relatively shallow water body. Palaeo-temperatures of the brine that precipitated these halite crystals are highly variable from 22 to 32°C (Lugli and Lowenstein, 1997) and suggest a shallow hydrologically unstable body of water, unlike units A and B.

The bromine content of halite increases from the base of unit A to the horizons containing kainite (layer B) where it obtains values of up to 150 ppm. Upwards, the bromine content decreases once more to where at the top of Unit C it drops below 13 ppm, likely indicating a marked dilution of the mother brine. The dilution is likely a consequence of recycling (dissolution and reprecipitation) of previously deposited halite either by meteoric-continental waters (based on Br content; Decima 1978), or by seawater (based on the high sulphate concentration and significant potassium and magnesium content of fluid inclusions; Garcia-Veigas et al., 1995).

As in the Danakhil succession, evaporite precipitation at Realmonte began as halite-CaSO4 interlayered succession at the bottom of a stratified perennial water body, which shallowed and increased in concentration until reaching potash kainite saturation. In Sicily, this was followed by a period of exposure and desiccation indicated by the presence of giant megapolygonal structures. Finally, seawater flooded the salt pan again, dissolving and truncating part of the previous halite layers, which was then redeposited under shallow-water conditions at the bottom of a nonstratified (holomitic) water body (Lugli et al., 1997, 1999).

Unlike Ethiopia, the Neogene kainite deposits of Sicily were deposited in a thrust “piggy-back” basin setting and not in a rift sump (Figure 2b). Mineralogically similar, very thick, rift-related, now halokinetic, halite deposits of Midddle Miocene age occur under the Red Sea’s coastal plain between Jizan, Saudi Arabia (where they outcrop) to Safaga, Egypt, with limited potash is found in some Red Sea locations at depths suitable for solution mining (Notholt 1983; Garrett, 1995). Potash-enriched marine end-liquor brines characterise Red Sea geothermal springs, implying a more sizeable potash mass may be (or once have been) present in this region. Hite and Wassef (1983) argue gamma ray peaks in two drill hole logs in this area suggest the presence of sylvite, carnallite and possibly langbeinite at depth.

K2SO4 salts in Miocene of Ukraine

Miocene salt deposits occur in the western Ukraine within two structural terranes: 1) Carpathian Foredeep (rock and potash salt) and (II) Transcarpathian trough (rock salt) (Figure 4a). These salt-bearing deposits differ in the thickness and lithology depending on the regional tectonic location (Czapowski et al., 2009). In the Ukrainian part of Carpathian Foredeep, three main tectonic zones were distinguished (Figure 4b): (I) outer zone (Bilche-Volytsya Unit), in which the Miocene molasse deposits overlie discordantly the Mesozoic platform basement at the depth of 10-200 m, and in the foredeep they subsided under the overthrust of the Sambir zone and are at depths of 1.2-2.2 km (Bukowski and Czapowski, 2009); Hryniv et al., 2007); (II) central zone (Sambir Unit), in which the Miocene deposits were overthrust some 8-12 km onto the external part of the Foredeep deposits of the external zone occur at depths of 1.0-2.2 km; (III) internal zone (Boryslav-Pokuttya Unit), where Miocene deposits were overthrust atop the Sambir Nappe zone across a distance of some 25 km (Hryniv et al., 2007).


The Carpathian Foredeep formed during the Early Miocene, located north of emerging the Outer (Flysch) Carpathians. This basin was filled with Miocene siliciclastic deposits (clays, claystones, sandstones and conglomerates) with a maximum thickness of 3 km in Poland and up to 5 km in Ukraine (Oszczypko, 2006). Two main evaporite bearing formations characterise the saline portions of the succession and were precipitated when the hydrographic connection to the Miocene ocean was severely reduced or lost (Figures 4, 5): A) Vorotyshcha Beds, dated as Late Eggenburgian and Ottnangian, some 1.1-2.3 km thick and composed of clays with sandstones, with exploitable rocksalt and potash salt interbeds. This suite is further subdivided into two subsuites: a) A lower unit, some 100-900 m thick with rock salt beds and, b) An upper unit, some 0.7-1.0 km thick, with significant potash beds, now deformed (Hryniv et al., 2007).The Stebnyk potash mine is located in this lower subset in the Boryslav-Pokuttya Nappe region, close to the Carpathian overthrust); B) Tyras Beds of Badenian age reach thicknesses of 300-800 m in the Sambir and Bilche-Volytysa units and are dominated by salt breccias and contain both rock and potash salts. Thicknesses in the Bilche-Volytsya Unit range from 20-70 m and are made up of a combination of claystones, sandstones, carbonates, sulphates and rock salts with little or no potash.


Hence, potash salts of the Carpathian Foredeep are related either to the Vorotyshcha Beds located in the Boryslav–Pokuttya zone, or to the Tyras Beds (Badenian) in the Sambir zone (Figure 5). These associations range across different ages, but have many similar features, such as large number of potash lenses in the section, mostly in folded-thrust setting, and owing to their likely Neogene-marine mother brine contain many sulphate salts, along with a high clay content. Accordingly, the main potash ore salts are kainite, langbeinite and kainite–langbeinite mixtures. Hryniv et al. (2007) note more than 20 salt minerals in the Miocene potash levels and in their weathering products. Bromine contents in halites of the Carpathian Foredeep for deposits without potash salts range from 10 to 100 ppm (on average 56 ppm); in halite from salt breccias with potash salts range from 30 to 230 ppm (average 120 ppm); and in halite from potash beds ranges from 70 to 300 ppm (average 170 ppm). In the ore minerals from the main potash deposits, bromine content ranges are: a) in kainite 800–2300 ppm; b) in sylvite 1410–2660 ppm; and c) in carnallite 1520–2450 ppm. This is consistent with kainite being a somewhat less saline precipitate than carnallite/sylvite (Figure 6).


The brines of Vorotyshcha and Tyras salt-forming basins (based on data from brine inclusions in an investigation of sedimentary halite, listed by Hyrniv et al. (2007), are consistent with mother brines of the Na–K–Mg–Cl–SO4 (MgSO4-rich) chemical type (consistent with a Neogene marine source). Inclusion analysis indicates the temperature of halite formation in the Miocene basin brines in Forecarpathian region was around 25°C. During the potash (Kainite) stages it is likely these solutions became perennially stratified and heliothermal so that the bottom brines could be heated to 40-60°C, more than double the temperature of the brine surface layer (see Warren, 2015 for a discussion of the physical chemistry and the various brine stratification styles). During later burial and catagenesis the temperatures preserved in recrystallised halites are as high as 70°C with a clear regional tectonic distribution (Hryniv et al. (2007).

Maximum potash salt production was achieved under Soviet supervision in the 1960s, when the Stebnyk and Kalush mines delivered 150 x 106 tonnes of K2O and the “New” Stebnyk salt-works some 250 x 106 tonnes as K2SO4 per year.


Stebnyk potash (Figure 7a)

The potash salt deposit in the Stebnyk ore field occurs within the Miocene (Eggenburgian) Vorotyshcha Beds (Figures 4, 5). Salt-bearing deposits in the Stebnyk area were traditionally attributed to two main rock complexes (Lower and Upper Vorotyshcha Beds) separated by terrigenous (sandstones and conglomerates) Zahirsk Beds (Petryczenko et al., 1994). More recent work indicates that the Zahirsk Beds belonged to a olistostrome horizon (a submarine slump, interrupting evaporite deposition) and there are no valid arguments for subdividing the Vorotyshcha Beds into two subunits (Hryniv et al., 2007).

There are multiple salt-bearing series in the Stebnyk deposit (Figure 4b) and their total thickness ranges up to 2,000 m in responses to intensive fold thickening and overthrusting of the Carpathians foredeep. Intervals with more fluid salt mineralogies were compressed and squeezed into the centers of synclinal folds, to form a number of elongate lens-shape ore bodies (Figure 4b). These bodies are often several hundreds meters wide and in mineable zones occur at the depth of 80-650 m, typically at 100-360 m.

The lower part of the Vorotyshcha Suite (Beds) in the Stebnyk Mine area is composed of a salt-bearing breccia, with sylvinite or carnallitite interclayers typically in its upper parts, as well as numerous blocks of folded marly clays (Bukowski and Czapowski, 2009). Above this is the potash-bearing ore series , some 10-125 m thick and, composed of beds of kainite, langbeinite and lagbeinite-kainite with local sylvinite and kieserite (Hryniv et al., 2007). The potash interval is overlain by a rock salt complex some 60 m thick (Koriń, 1994).

The Stebnyk plant is now abandoned and in disrepair. In 1983 there was a major environmental disaster (explosion) at a nearby chemical plant (in the ammonia manufacture section), which was supplied chemical feedstock by the mine. No lives were lost, but damage at the plant, tied to the explosion, released some 4.6 million cubic metres of thick brine from an earthen storage dam into the nearby Dniester River. At the time this river was probably the least environmentally damaged by industrial operations under Soviet administration. The spill disrupted water supplies to millions of people along the river, killed hundreds of tons of fish, destroyed river vegetation and deposited a million tons of mineral salts on the bottom of a 30-mile-long reservoir on the Dniester. Stebnik is located in the Ukrainian province of Lvov. Staff members at the United States Embassy at the time seized on the name to dub the incident ‘’Lvov Canal,’’ after the Love Canal contamination in the United States.

Kalush potash salt geology (Figure 7b)

Thickness of Miocene (Badenian) deposits near the Kalush Mine is around 1 km (Figures 4a). Two local salt units (beds) are distinguished within the Tyras Beds: the Kalush and Holyn suites, which constitute the nucleus of Miocene deposits of Sambir Unit (Figure 5). Beds have been overthrust and folded onto the Mesozoic and Middle to Upper Miocene molasse sediments of the outer (Bilche-Volytsya) tectonic unit (Figure 4b). The Kalush Beds are 50-170 m thick, mostly clays, with sandstone and mudstone intercalations,. In contrast the Holyn beds are more saline and dominated by clayey rock salts (30-60% of clay), salty clays and claystones (Koriń, 1994). Repeated interbeds and concentrations of potash salts up to several meters thick within the Holyn beds define a number of separate potash salt fields in the Kalush area (Figures 4b, 5). Such salt seams are dominated by several MgSO4-enriched mineralogies: kainite, langbeinite-kainite, langbeinite, sylvinite and less much uncommon carnallite and polyhalite. These polymineralogic sulphate ore mineral assemblages are co-associated with anhydrite, kieserite and various carbonates. The potash ore fields typically occur in tectonic troughs within larger synclines, usually at depths of 100-150 m, to a maximum of 800 m.

Conventional processing streams for manufacture of SOP and MOP

To date the main natural sulphate salts that have been successfully processed to manufacture sulphate of potash (SOP) are;

  • Kainite (KCl.MgSO4.3H2O) (as in Sicily - potash mines are no longer active)
  • Kieserite (MgSO4.H2O) (as in Zechstein, Germany - some potash mines active)
  • Langbeinite (K2SO4.2MgSO4) (as in Carlsbad, New Mexico - active potash mine)
  • Polymineralic sulphate ores (as in the Stebnyk and Kalush ores, Ukraine - these potash mines are no longer active)
  • All the processing approaches deal with a mixed sulphate salt or complex sulphate brine feed and involve conversion to form an intermediate doublesalt product, usually schoenite (or leonite at elevated temperatures) or glaserite. This intermediate is then water-leached to obtain SOP.

    For example, with a kainite feed, the process involves the following reactions:

    2KCl.MgSO4.3H2O --> K2SO4.MgSO4.6H2O + MgCl2

    followed by water-leaching of the schoenite intermediate

    K2SO4.MgSO4.6H2O --> K2SO4 + MgSO4 + 6H2O


    In Sicily in the 1960s and 70s, the Italian miners utilized such a solid kainitite ore feed, from conventional underground mining and leaching approaches. The various Italian mines were heavily government subsidized and in terms of a free-standing operation most were never truly profitable. The main kainitite processing technique used in Sicily, is similar in many ways to that used to create SOP from winter-precipitated cryogenic salt slurries in pans that were purpose-constructed in the North Arm area of in Great Salt Lake, Utah (Table 1; see Warren, 2015 for details on Great Salt Lake operations). The Italian extraction method required crushing and flotation to create a fine-sized kainite ore feed with less than 5% NaCl. This product was then leached at temperatures greater than 90°C with an epsomite brine and converted into a langbeinite slurry, a portion which was then reacted with a schoenite brine to precipitate potassium chloride and epsomite solids, which were then separated from each other and from the epsomite brine. A portion of the potassium chloride was then reacted with magnesium sulphate in the presence of a sulphate brine to create schoenite and a schoenite brine. This schoenite brine was recycled and the remaining potassium chloride reacted with the schoenite in the presence of water, to obtain potassium sulphate and a sulphate brine.

    The processing stream in the Ukraine was similar for the various Carpathian ore feeds, which “out-of-mine-face” typically contained around 9% potassium and 15% clay and so were a less pure input to the processing stream, compared to the typical mine face product in Sicily. Like Sicily, schoenite was the main intermediate salt. Ore was leached with a hot synthetic kainite solution in a dissolution chamber. The langbeinite, polyhalite and halite remained undissolved in the chamber. Salts and clay were then moved into a Dorr-Oliver settler where the clays were allowed to settle and were then moved to a washer and discarded. The remaining solution was crystallized at the proper cation and anion proportions to produce crystalline schoenite. To avoid precipitation of potassium chloride and sodium chloride, a saturated solution of potassium and magnesium sulfate was added to the Dorr-Oliver settler. The resulting slurry of schoenite was filtered and crystals were leached with water to produce K2SO4 crystals, which were centrifuged and recycled and a liquor of potassium and magnesium sulfates obtained. The liquid phase from the filter was recycled and added to the schoenite liquor from obtaoned by vacuum crystallization. Part of the schoenite liquor was evaporated to produce crystalline sodium sulfate, while the magnesium chloride liquid end product was discarded. The slurry from the evaporation unit was recycled as “synthetic kainite.” This process stream permitted the use of the relatively low quality Carpathian ore and produced several commercially valuable products including potassium sulfate, potassium-magnesium sulfate, potassium chloride, sodium sulfate and magnesium chloride liquors. Being a Soviet era production site, the economics of the processing was not necessarily the main consideration. Rather, it was the agricultural utility of the product that was paramount to the Soviet state.

    Can Danakhil potash be economically mined?

    For any potash deposit (MOP or SOP) there are three approaches that are used today to economically extract ore (Warren 2015): 1) Conventional underground mining. 2) Processing of lake brines 3) Solution mining and surface processing of brines. Historically, method 1 and 2 have been successfully conducted in the Danakhil Depression, although method 1) was terminated in the Dallol area by a mine flood.

    Conventional mining

    To achieve a successful conventional underground MOP potash mine any where in the world, ideally requires (Warren, 2015): 1) A low dipping, laterally continuous and consistently predictable quality ore target, not subject to substantial changes in bed dip or continuity. 2) An ore grade of 14% K2O or higher, and bed thickness of more than 1.2 m. 3) Around 8-m of impervious salt in the mine back or roof, although some potash mines, such as the Boulby mine in the UK are working with < 2 meters of salt in the back (but there the extraction is automated and the access roads approach the target ore zone from below). 4) An initial access shaft that is vertical and typically dug using ground freezing techniques to prevent unwanted water entry during excavation. 5) A typical ore depth in the range 500-1100 metres. Shallower mines are subject to unpredictable water entry/flooding and catastrophic roof collapse, as in the Cis-Urals region (see Solikamsk blog). Mines deeper than 1000-1100 metres are at the limit of conventional mining and the salt surround is subject to substantial creep and possible explosive pressure release outbursts (as in some potash mines in the former East Germany). 6) At-surface and in-mine conditions not subject to damage by earthquakes, water floods or volcanism.

    During the feasibilty phase of the Parsons Mining Project it became evident that the halite material overlying the Sylvinite Member was porous and that there was no adequate hydrologic protection layer above the Sylvinite Member. In my mind, this is further evidence of the hydrologic access needed to convert carnallite to sylvite along the bajada front (see previous blog). In any event the absence of a hydrologic protection layer above the Sylvinite Member means that conventional underground mining is not feasible for this type of potash. In addition, given the tectonic instability of the Danakhil Depression it is likely that no underground conventional mine is feasible in the hydrologically, seismically and hydrothermally active setting, which is the Danakhil depression, even if planning to exploit the deeper widespread kainitite beds (>350-450m)

    Some explorers in the Danakhil depression, especially on the Eritrean side are proposing to use surface or open-pit mining (quarrying) approaches to reach and extract/processing shallow ore salts. For this approach to be successful requires the shallow potash targets to be above regional groundwater level. Depths to the different ore targets on the Ethiopian side of the depression range between 45m and 600m and almost all lie below the regional water. Also, to access the mineralised material a large volume of variably water-saturated overburden would need to be removed. Even if areas with ore levels above the water table do exist on the Ethiopian side, the whole of the Danakhil sump is subject to periodic runoff and sheetflooding, sourced in the western highlands. Open pit areas would be regularly flooded during the lifetime of the pit, resulting in a need for extensive dewatering. For these reasons, and the possibility of earthquake damage, open pit mining is likely not feasible.

    Can the Danakhil potash be solution mined?

    To achieve this, brines extracted from different mineralogical levels and ore types will need to be individually targeted and kept as separate feeds into dedicated at-surface processing streams. On the Dallol surface, there are numerous sites that are suitable for pan construction, the climate is suitable for natural solar concentration as the region is typically dry, flat and hyperarid. If the potash zones in the Dallol depression are to be economically exploited via solution mining it will likely first require an understanding of the geometries of the 3 different forms of potash, namely; 1) Bedded kainitite-carnallitite (widespread in the depression), 2) Diagenetic sylvite via incongruent dissolution (focused by deep meteoric mixing and the bajada chemical interface along the western margin. 3) Hydrothermal potash (largely found in the vicinity of Dallol mound). Next, in order to have known-chemistry feedstocks into a SOP chemical plant, it will require the appropriate application of extraction/solution mining chemistries for each of these deposit styles. This would involve the construction of dedicated brine fields and the pumping of shallow Dallol brines (mostly from <200-250m below the surface) into a series of mineralogically-separated at-surface solar concentrator pans. 

    There are some subsurface aspects that need to be considered and controlled  in a solution mining approach in the Danakhil. The first is the possibility of uncontrolled solution cavity stoping (for example where a solution cavity blanket layer is lost due to cavity intersection with an unexpected zone of high permeability). If cavity shape is not closely monitored (for example by regular downhole sonar scans) and controlled, this could ultimately lead to the collapse of the land surface atop regions of shallow evaporites (<150-200 below the surface). As we saw in blog 3, doline collapse is a natural process in the Dallol Mound region, as it is any region of shallow soluble evaporites in contact with undersaturated pore waters. Ongoing solution via interaction with hydrothermal waters has created the colorful brine springs that attract tourists to the Dallol Mound region. But a operator does not want new dolines to daylight in their brine field, as environmental advocates would quickly lay blame at the feet of the brinefield operator. For this reason, the region in the vicinity of the Dallol Mount (eg the “Crescent deposit”) should probably be avoided.

    Most modern brinefield operators prefer a slowly-dissolving targeted salt bed that is at least 400-500m below the land surface (Warren, 2015). This broadens and lessens the intensity of the cone of ground collapse above the extraction zone and so lessens the possibility of catastrophic surface collapse. Use of a diesel rather than air blanket during cavity operation is also preferred because of potential porosity intersections at the base of the Upper Rock Salt (URF) contact (see blog 2 in the Danakhil blogs) Appropriate deeper potash beds in the Danakhil are laterally continuous beds of kainitite with lesser carnallitite. Drilling to date has identified little sylvite or bischofite in these widespread layers. This simplifies the mineral input chemistry in terms of a kainite target further out in the saltflat with a sylvite or sylvite bischofite operation closer toward the western margin, but there are no currently active solution mines solely targeting a kainite ore anywhere in the world.

    This leads to another consideration with a solution mining approach in the Danakhil depression, and that is that there are no existing brine technologies that can deal economically with high concurrent levels of magnesium and possibly-elevated sulphate levels in a recovered brine feed. The third consideration is reliably predicting the occurrence of, and avoiding, any metre- to decametre-scale brine-filled cavities that the drilling has shown are not uncommon at the sylvinite-bischofite-carnallite level in the Dallol stratigraphy along the Bajada chemistry zone. Intersecting and slowly dewatering such large brine cavities may not lead to at-surface ground collapse, but if not identified could create unexpected variations in the ionic proportions of brine feeds into the solar concentrators (for example drilling has identified subsurface regions dominated by bischofite, which is one of the most soluble bittern salts in the Danakhil depression - see Ercospan 2010, 2011 for drill result summaries).

    And so?

    So, at this stage, there are encouraging possibilities for economic recovery of both MOP and SOP from solution brines pumped to chemistry-specific solar pans in the Danakhil. Processing chemistry will require further site-specific studies to see which of the current known methods or their modification is economically feasible for SOP and perhaps combined SOP and MOP manufacture in the hyperarid climate of the Danakhil, as is being currently done by Allana Potash. It is also possible that a new processing stream chemistry could to be developed for the Dallol brines, in order to deal with very high concurrent levels of MgCl2 (widespread bischofite beds), or develop new or modify existing processing streams that target kainitite at depth. Similar K2SO4 brine processing chemistries have been applied in pans of the margins of the Great Salt Lake. But there salt pan processing was in part seasonally cryogenic, something that the Dallol climate certainly is not, so it is likely modified or new approaches to year-round pan management will be required.

    Any future potash operation in the Danakil will have to compete in product pricing with well established, high-volume low cost producers in Canada, Belarus and Russia (Figure 8). Today, establishing a new conventional underground potash mine is associated with setup costs well in excess of a billion dollars (US$). The costs are high as the entry shaft to a conventional underground mine must be completed without water entry and is usually done via ground freezing. This is the approach currently underway at BHP’s MOP Jansen Mine in Saskatchewan, Canada. Because of the very high costs involved in underground entry construction, and the well established nature of the competition, the proved amount of ore for a conventional mine should be sufficient for at least 20 years of production (subject to a given mill size, mill recovery rate for a given ore depth and the density and origin of salt “horses”). Kogel et al. (2006) states any potash plant or mill should be at capable of least 300,000 t K2O per annum in order to compete with a number of established plants with nameplate capacity in excess of 1 Mt.

    In contrast, the shallow nature of a Danakhil potash source means cheaper access costs, while a solution well approach makes for much cheaper and shorter approach times for brine/ore extraction, providing suitable economic brine processing streams are available (Figure 8). Potash is a mine product where transport to market is a very considerable cost proportion in terms of an operation's profitability. The location of the Danakhil gives it a low-cost transport advantage as a future supplier to the ever-growing agricultural markets of Africa, India and perhaps China. And finally, a potassium sulphate product has a 30% cost premium over a muriate of potash (KCl) product.

    References

    Bukowski, K., and G. Czapowski, 2009, Salt geology and mining traditions: Kalush and Stebnyk mines (Fore-Carpathian region, Ukraine): Geoturystyka, v. 3, p. 27-34.

    Czapowski, G., K. Bukowski, and K. Poborska-Młynarska, 2009, Miocene rock and potash salts of West Ukraine. y): Field geological-mining seminar of the Polish Salt Mining Society. Geologia (Przegląd Solny 2009), Wyd. AGH, Kraków, 35, 3: 479-490. (In Polish, English summary).

    Decima, A., J. A. McKenzie, and B. C. Schreiber, 1988, The origin of "evaporative" limestones: An Example from the Messinian of Sicily: Journal of Sedimentary Petrology, v. 58, p. 256-272.

    Decima, A., and F. Wezel, 1973, Late Miocene evaporites of the central Sicilian Basin; Italy: Initial reports of the Deep Sea Drilling Project, v. 13, p. 1234-1240.

    Decima, A., and F. C. Wezel, 1971, Osservazioni sulle evaporiti messiniane della Sicilia centromeridionale: Rivista Mineraria Siciliana, v. 130–132, p. 172–187.

    Garcia-Veigas, J., F. Orti, L. Rosell, C. Ayora, R. J. M., and S. Lugli, 1995, The Messinian salt of the Mediterranean: geochemical study of the salt from the central Sicily Basin and comparison with the Lorca Basin (Spain): Bulletin de la Societe Geologique de France, v. 166, p. 699-710.

    Garrett, D. E., 1995, Potash: Deposits, processing, properties and uses: Berlin, Springer, 752 p.

    Hite, R. J., and A. S. Wassef, 1983, Potential Potash Deposits in the Gulf of Suez, Egypt: Ann. Geol. Survey Egypt, v. 13, p. 39-54.

    Hryniv, S. P., B. V. Dolishniy, O. V. Khmelevska, A. V. Poberezhskyy, and S. V. Vovnyuk, 2007, Evaporites of Ukraine: a review: Geological Society, London, Special Publications, v. 285, p. 309-334.

    Koriń, S. S., 1994, Geological outline of Miocene salt-bearing formations of the Ukrainian fore-Carpathian area (In Polish, English summary): Przegląd Geologiczny, v. 42, p. 744-747.

    Lowenstein, T. K., L. A. Hardie, M. N. Timofeeff, and R. V. Demicco, 2003, Secular variation in seawater chemistry and the origin of calcium chloride basinal brines: Geology, v. 31, p. 857-860.

    Lowenstein, T. K., M. N. Timofeeff, S. T. Brennan, H. L. A., and R. V. Demicco, 2001, Oscillations in Phanerozoic seawater chemistry: Evidence from fluid inclusions: Science, v. 294, p. 1086-1088.

    Lugli, S., 1999, Geology of the Realmonte salt deposit, a desiccated Messinian Basin (Agrigento, Sicily): Memorie della Societá Geologica Italiana, v. 54, p. 75-81.

    Lugli, S., and T. K. Lowenstein, 1997, Paleotemperatures preserved in fluid inclusions in Messinian halite, Realmonte Mine (Agrigento, Italy): Neogene Mediterranean Paleoceanography, 28–30 September 1997, Erice. Abstract volume, 44–45.

    Lugli, S., B. C. Schreiber, and B. Triberti, 1999, Giant polygons in the Realmonte mine (Agrigento, Sicily): Evidence for the desiccation of a Messinian halite basin: Journal of Sedimentary Research Section A-Sedimentary Petrology & Processes, v. 69, p. 764-771.

    Manzi, V., S. Lugli, M. Roveri, B. C. Schreiber, and R. Gennari, 2011, The Messinian "Calcare di Base" (Sicily, Italy) revisited: Geological Society of America Bulletin, v. 123, p. 347-370.

    Notholt, A. J. G., 1983, Potash in Developing Countries, in R. M. McKercher, ed., Potash '83; Potash technology; mining, processing, maintenance, transportation, occupational health and safety, environment, p. 29-40.

    Oszczypko, N., P. Krzywiec, I. Popadyuk, and T. Peryt, 2006, Carpathian Foredeep Basin (Poland and Ukraine): Its Sedimentary, Structural, and Geodynamic Evolution, in J. Golonka, and F. J. Picha, eds., The Carpathians and their foreland: Geology and hydrocarbon resources, The American Association of Petroleum Geologists Memoir, v. 84, p. 293-350.

    Petryczenko, O. I., G. M. Panow, T. M. Peryt, B. I. Srebrodolski, A. W. Pobereżski, and K. W.M., 1994, Outline of geology of the Miocene evaporite formations of the Ukrainian part of the Carpathian Foredeep (In Polish, English summary): Przegląd Geologiczny, v. 42, p. 734-737.

    Roveri, M., S. Lugli, V. Manzi, and B. C. Schreiber, 2008, The Messinian Sicilian stratigraphy revisited: new insights for the Messinian salinity crisis: Terra Nova, v. 20, p. 483-488.

    Warren, J. K., 2015, Evaporites: A compendium (ISBN 978-3-319-13511-3) Released August 2015: Berlin, Springer, 1600 p.

    Danakhil Potash, Ethiopia: Beds of Kainite/Carnallite, Part 2 of 4

    John Warren - Wednesday, April 29, 2015

    The modern Dallol saltflat described in the previous blog defines the upper part of more than 970 metres of halite-dominated Quaternary evaporites that have accumulated beneath the present salt pan of the Northern Danakhil. The total sequence is made up of interbeds of halite, gypsum, anhydrite and shale with a potash succession separating two thick sequences of halite (Figure 1; Holwerda and Hutchison, 1968; Augustithis, 1980). At depths of more than 35-40 meters, and deepening to the east, this km-thick subcropping Quaternary halite-dominated fill contains one, and perhaps two or more, potash beds. For a more detailed description of the upper part of the fill the reader is referred to the previous blog and Chapter 11 in Warren, 2015.


    Bedded Pleistocene evaporites may underlie the entire Danakil depression, but younger lava flows of the Aden Volcanic Series and alluvium washed in from the surrounding bajada obscure much of the older Pleistocene sedimentary series across much of the southern part of the depression beyond Lake Assale). Potash exploration drilling and core recovery is concentrated in the accessible parts of the northern Danakhil rift, where the saltflat facilitates vehicle access, compared with the lava-covered regions south of Lake Assale. The most recent volcanic activity affecting the known potash region was the emplacement of the Dallol Mound, which has driven local uplift of the otherwise subsurface potash section to where it approaches the surface in the immediate vicinity of the mound (Figure 2a).

    Away from the Dallol volcanic mound the upper potash bed beneath the saltflat lies at a depth of 38-190 metres. A lower inferred potash bed likely occurs at depth along the eastern end of the saltflat, but this second bed is inferred from high API kicks in gamma logs run in deeper wells, no solid salt was recovered (Holwerda and Hutchison, 1968). The upper proven potash bed is now the target zone for a number of minerals companies currently exploring for potash in the region. Regionally, both potash units dip east, with the deepest indicators of the two units encountered by the drill in a single well on the eastern side of the saltflat at depths of 683 and 930 m, respectively (Figure 2: Holwerda and Hutchison, 1968). The likely Quaternary age of the potash units, the marine brine source, explains the high magnesium content of the potash bittern salts, as modern seawater contains high levels of Mg and SO4.


    My study of core that intersected the potash interval and that is sandwiched between the Lower and Upper Halite units shows both the lower and the upper halite units retain pristine sedimentary textures, with features and vertical successions that indicate distinct hydrologies during their deposition (Figure 3). There is no textural evidence of halokinetic recrystallization in halites any of the studied cores and published seismic also indicates consistent dips in the evaporites . Most of the textures in the cored potash interval indicate a subaqueous density-stratified environment, with brine reworking of the upper part of primary kainitite, carnallitite units. Perennial subaqueous, density-stratified brines also typify the hydrology of the Lower Halite unit, albeit with somewhat lower salinities tan those precipitating the bitterns (Figure 3). The brine that precipitating the Upper Rocksalt Formation was shallower and more ephemeral. The following paragraphs summarise my core-based observations and interpretations that led to this interpretation of the evolving brine hydrology.

    The Lower Rocksalt Formation (LRF) is dominated by bottom-growth-aligned subaqueous halite textures and lack of siliciclastic detritus, unlike the Upper Rocksalt Formation (Figure 3). Halite textures in the LRF lack porosity and dominated by coarsely crystalline beds made up of cm-scale NaCl-CaSO4 couplets dominated by upward-pointing halite chevrons and mantled by thin CaSO4 layers (Figure 3). This meromictic-holomictic textural association passes up into the upper part of the LRF with cm-scale proportions alternating of less-saline to more-saline episodes of evaporite precipitation decreasing, indicating an “on-average” increasingly shallow subaqueous depositional setting as one approaches the base of the kainitite unit. The combination of bottom-nucleated and cumulate textures in the LRF are near identical to those in the halites in the kainitite interval in the Messinian of Sicily (see later). 

    The laminated Kainitite Member is also a subaqueous unit with layered cumulate textures (Figure 3), it was likely deposited on a pelagic bottom beneath a shallow body of marine-fed bittern waters, which never reached carnallite saturation. Above this are the variably present carnallitic Intermediate and Sylvinitite members and the overlying Halite marker beds in turn overlain by the Upper Halite unit. All retain pristine textures indicating mostly subaqueous deposition, soon followed by varying exposure and reaction with shallow phreatic brines moving across the top of Kainitite member. This shallow phreatic brine crossflow drove syndepositional mineral alteration and collapse in the upper part of the kainitite and carnallitite units.


    The potash-entraining interval between the URF and LRF is called the Houston Formation has been drilled and cored extensively by explorers in the basin, showing it is consistently between 15 and 40 metres thick (Figure 1). Stratigraphically, it consists of lower Kainitite Member (4-14m thick) atop and in depositional continuity with the LRF (more than 500m thick) (Figure 3). The Kainitite Member is fine-grained, laminated, locally wavy-bedded, containing up to 50% kainite cumulates in a cumulate (non-chevron) halite background, along with small amounts of a white mineral that is likely epsomite. It is overlain by what older literature describes as the “Carnallitite Intermediate unit” (3-25 m thick). More recent potash exploration drilling has shown all the members that constitute the Intermediate Carnallitite Member is not always present within the Dallol depression. Mineralogically is at best considered as variably developed (Figure 3). Its lower part is a layered to laminated carnallite-halite mixture with some kieserite, anhydrite and epsomite. This can pass up or laterally into kainitite with sylvite. Above the Intermediate Member is the 0-10m thick Sylvinite Member containing 20-30% sylvite, along with polyhalite and anhydrite (up to 10%). Typically the sylvinite member shows primary layering disturbed by varying intensities of slumping and dissolution. Often the upper part of a carnallite unit (where present) also shows similar evidence of dissolution and reprecipitation.

    Cores through the sylvinite member and parts of the upper carnallitite member sample a range of recrystallization/flow/slump textures, rather than primary horizontal-laminar textures. Beneath the sylvinite member, the variably-present upper carnallitite member contains a varied suite of non-commercial potash minerals that in addition to carnallite include, kieserite, kainite (up to 10% by volume) and polyhalite, along with minor amounts of sylvite. Minor anhydrite is common, while rinneite may occur locally, along with rust-red iron staining. Sylvite is more abundant near the top of the carnallitite member and its proportion decreases downward, perhaps reflecting its groundwater origin. Kainite is the reverse and its proportion increases downward. The sylvinite member and the carnallitite member also show an inverse thickness relationship. Bedding in the carnallitite member is commonly contorted with folded and brecciated horizons interpreted as slumps. The base of the carnallitite member is defined as the level where carnallite forms isolated patches in the kainite before disappearing entirely.

    Drilling in the past few years has clearly show that in some parts of the evaporite unit, located nearer to the western side of the basin, the lower and upper carnallite units are separated by thick bischoftite intervals (Figures 2b, 3). The bischofite is layered at a mm-cm scale and with no obvious breaks related to freshening and exposure, implying it too was deposited in a perennially subaqueous or phreatic cavity setting (Pedley et al., in press).

    The potash/bischofite interval passes up into a slumped and disturbed halite-dominated unit that is known as the “Marker Beds” because of the co-associated presence of clay lamina and bedded halite, along with traces of potash minerals (Figure 3). This unit then passes up into the massive Upper Rock Salt unit across an unconformity at the top of the halite “Marker Beds.” Bedded, and at times finely laminated cumulate textures in the various magnesian bittern units, are used by many to argue that the kainitite and the lower carnallitite members are primary or syndepositional precipitates.

    Three types of potash-barren zones can occur within it and are possibly related to the effects of groundwaters and solution cavity cements within the carnallitite unit, perhaps precipitated before the deposition of the overlying marker halites. Barren zones in the Sylvinite member are regions where: a) the entire sylvinite bed is replaced by a relatively pure stratiform halite, along with dispersed nodules of anhydrite, b) zones up to 23 m thick and composed of pure crystalline halite (karst-fill cements?) that occur patchily within the sylvinite bed and, c) potash-depleted zones defined by coarsely crystalline halite instead of sylvinite. Bedding plane spacing and layering and some slumping styles in the halite in styles a and b are similar to that in the sylvite bed. Contact with throughflushing freshened nearsurface and at-surface waters perhaps created most of the barren zones in the sylvinite. Fluid crossflow may also have formed or reprecipitated sylvite of the upper member, via selective surface or nearsurface leaching of MgCl2 from its carnallite precursor (Holwerda and Hutchison, 1968; Warren 2015). Due to the secondary origin of much of the sylvite in the Sylvinite member, the proportion of sylvite decreases as the proportion of carnallite increases, along with secondary kieserite, polyhalite and kainite.

    The kainite member is texturally distinctive and is composed of nearly pure, fine-grained, dense, relatively hard, amber-coloured kainite with ≈ 25% admixed halite (Figure 3). Core study shows the lamina style remained flat-laminar (that is, subaqueous density-stratified with periodic bottom freshening) as the mineralogy passes from the LRF up into the flat-laminated kainitite member (Figure 4: Warren, 2015; Pedley et al., in press). Throughout, the kainitite unit shows a cm-mm scale layering, with no evidence of microkarsting or any exposure of the kainitite depositional surface. That is, the Kainitite Member is a primary depositional unit, like the underlying halite and still retains pristine evidence of its dominantly subaqueous depositional hydrology. The decreased proportion of anhydrite in the Kainitite Member, compared to the underlying LRF, indicates a system that on-average was more saline than the brines that deposited the underlying halite. The preponderance of MgSO4 salts means the Kainitite unit like the underlying LRF formed by the evaporation of seep-supplied seawater.

    This situation differs from the present “closed basin” hydrology of the Danakil Depression which typifies the URF and the overlying Holocene succession (Hardie, 1990; Warren, 2015).

    Units atop the primary laminated textures of the kainitite, lower carnallitite and bischofite members (where present) tend to show various early-diagenetic secondary textures (Figure 4). It seems much of the sylvinite and upper carnallitite member deposition was in shallow subsurface or at-surface brine ponds subject to groundwater crossflows and floor collapse, possibly aided by seismically-induced pulses of brine crossflow. In addition, this perennial density-stratified brine hydrology was at times of holomixis subject to brine reflux and the brine-displacement backreactions that typify all evaporite deposition, past and present (Warren 2015).

    The observation of early ionic mobility in potash zone brines in the Danakil depositional system is also not unusual in any modern or ancient potash deposit. It should not be considered necessarily detrimental to the possibility of an extensive economically exploitable potash zone being present in the Danakil Depression. Interestingly, all the world’s exploited potash deposits, including those in the Devonian of Canada and Belarus, the Perm of the Urals and the potash bed of west Texas, show evidence of syndepositional and shallow burial reworking of potash (Warren, 2015). Early potassium remobilization has created the ore distributions in these and other mined potash depositsTextures and mineralogies in the Upper Rocksalt Formation (URF) define a separate hydrological association to the marine-fed LRF and Houston Formation (Table 4). Compared to the LRF, the URF has much higher levels of depositional porosity, lacks high levels of CaSO4, and has high levels of detrital siliciclastics. This is especially so in its upper part, which shows textural evidence of periodic and ongoing clastic-rich sheetflooding and freshening (Figure 4). It was deposited in a hydrology that evolved up section to become very similar to that active on today’s halite pan surface. The URF contains no evidence of salinities or textures associated with a potash bittern event and is probably not a viable exploration target for solid potash salts.

    Above the URF is a clastic unit with significant amounts of, and sometimes beds dominated by, lenticular gypsum and displacive halite. The unit thickens toward the margins of the depression (Figure 2). The widespread presence of diagenetic salts indicates high pore salinities as, or soon after, the saline beds that stack into the clastic unit were deposited. Some of these early diagenetic evaporite textures are spectacular, as seen in the displacive halite recovered in a core from the lower portion of the clastic overburden, some 45 m below the modern pan surface (Figure 3).

    What is clear from the textures preserved in the potash-rich Houston formation and the immediately underlying and overlying halites is that they first formed in a subaqueous-dominated marine-fed hydrology (Figure 4), which evolves up section into more ephemeral saltpan hydrologies of today (see the previous blog). The potash interval encapsulated in the Houston formation has primary mineralogical associations that are derived by evaporation of Pleistocene seawater (kainitite, carnallitite). In contrast the sylvite section in the Houston tends to form when these primary mineralogies are altered diagenetically perhaps soon after deposition but, especially, when hydrothermal waters circulated through uplifted beds of the Houston Formation, as is still occurring in the vicinity of the Dallol Volcanic Mound. Or where the chemical/meteoric interface associated with the encroachment of the bajada sediment pile drove incongruent dissolution of carnallite along the updip edge of the Houston Fm (as we shall discuss in the next blog). 

    References

    Augustithis, S. S., 1980, On the textures and treatment of the sylvinite ore from the Danakili Depression, Salt Plain (Piano del Sale), Tigre, Ethiopia: Chemie der Erde, v. 39, p. 91-95.

    Hardie, L. A., 1990, The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis: American Journal of Science, v. 290, p. 43-106.

    Holwerda, J. G., and R. W. Hutchinson, 1968, Potash-bearing evaporites in the Danakil area, Ethiopia: Economic Geology, v. 63, p. 124-150.

    Pedley, H. M., J. Neubert, and J. K. Warren, in press, Potash deposits of Africa: African Mineral Deposits, 35TH International Geological Congress (IGC), Capetown (28 August to 4 September 2016).

    Warren, J. K., 2015, Evaporites: A compendium (ISBN 978-3-319-13511-3) Released August 2015: Berlin, Springer, 1600 p. 

    Danakhil Potash, Ethiopia: Is the present geology the key? Part 1 of 4

    John Warren - Sunday, April 19, 2015

    Geology of potash in the Danakil Depression, Ethiopia: Is the present the key?

    The Danakhil region, especially in the Dallol region of Ethiopia, is world renowned for significant accumulations of potash salts (both muriates and sulphates), and is often cited as a modern example of where potash accumulates today. What is not so well known are the depositional and hydrological dichotomies that control levels of bittern salts in the Pleistocene stratigraphy that is the Danakhil fill. Geological evolution of the potash occurrences in the Dallol saltflat and surrounds highlights the limited significance of Holocene models for potash, when compared to the broader depositional and hydrological spectra preserved in ancient (Pre-Quaternary) evaporite deposits (see Warren, 2010, 2015 for a more complete analysis across a variety of evaporite salts).

    Across the next four blogs, I shall discuss the geological character of the Danakhil fill and the controls on potash in the depression via four time-related discussions; A) Current continental fan - saltflat hydrology that typifies present and immediate past deposition in the depression (Danakhil Blog1). B) A time in the latest Pleistocene when there was a marine hydrographic connection exemplified by a healthy coralgal rim facies (probably ≈ 100,000 years ago, and a subsequent drawndown gypsum rim facies. Both units are discussed in this blog, (Danakhil Blog1), and C) a somewhat older Pleistocene period when widespread potash salts were deposited via a marine seepage fed hydrology (Danakhil Blog2). Then, within this depositional frame, we will consider D) the influence of Holocene volcanism and uplift driving remobilisation of the somewhat older potash-rich evaporite source beds into the Holocene hydrology (Danakhil Blog3) and finally how this relates to models of Neogene marine potash deposition (Danakhil Blog4). These observations and interpretations are based in large part on a two-week visit to the Dallol, sponsored by BHP minerals, and focused on the potash geology of the region. 

    Dallol Physiography

    The Danakhil Depression of Ethiopia and Eritrea is an area of intense volcanic and hydrothermal activity, with potash occurrences related to rift magmatism, marine flooding, and deep brine cycling. The region is part of the broader Afar Triple Junction and located in the axial zone of the Afar rift, near the confluence of the East African, Red Sea and Carlsberg rifts (Figure 1a; Holwerda and Hutchison, 1968; Hutchinson and Engels, 1970; Hardie, 1990). The depression defines the northern part of the Afar depression and runs SSE parallel to the Red Sea coast, but lies some 50 to 80 km inland, and is separated from the Red Sea by the Danakil Mountains. The fault-defined Danakil Depression is 185 km long, up to 70 km wide, with a floor that in the deeper parts of the depression is more than 116 meters below sea level. It widens to the south, beginning with a 10 km width in the north and widening up to 70 km in the south (Figure 1a). In the vicinity of Lake Assele, the northern portion of the Danakil is known as the Dallol Depression and has been the focus for potash exploration for more than a century and is in the deepest region of the depression with elevations ranging between 50m to 120m below sealevel (Figure 1b, c). Shallow volcano-tectonic barriers, behind Mersa Fatma, Hawakil Bay and south of the Gulf of Zula, prevent hydrographic (surface) recharge to the depression. Marine seepage is not occurring at the present time, but likely did so at the time the main potash unit was precipitated. Lake Assele (aka Lake Kurum) with a water surface at -115m msl should not be confused with Lake Asal (-155 msl), located 350 km to the southeast of the Danakil. Asal an active marine-fed hydrographically isolated lacustrine drawdown system, which today is depositing a combination of pan halite and subaqueous gypsum in the deepest part of the Asal-Ghubbat al Kharab rift (Figure 1a; Warren, 2015).

    Today the halite-floored elongate saltpan, known as the Dallol saltflat, occupies the deepest part of the northern Danakil Depression, extending over an area some 40 km long and 10 km wide (Figure 1b, c). The pan’s position is asymmetric within the Danakil Depression; it lies near the depression’s western edge, some 5km from the foot of the escarpment to the Balakia Mountains and the Ethiopian Highlands, but some 50 km from the eastern margin of the depression, which is in Eritrea. The Dallol saltpan and adjacent Lake Assele today constitute the deepest continental drainage sump in the Afar depression (Figure 1b, c). The area, located east and northeast of the main modern Dallol saltpan depression, is mostly an extensive gypsum plain (Bannert et al., 1970). As we shall see, the gypsum pavement, and its narrower equivalents on the western basin flank, defines a somewhat topographically higher (still sub-sealevel) less-saline, lacustrine episode in the Dallol depression history fill. To the south of the Dallol salt pan, bedded Pleistocene evaporites may underlie the entire Danakil depression, but younger lava flows of the Aden Volcanic Series in combination with alluvium washed in from the surrounding bajada obscure much of the older Pleistocene sedimentary series in southern part of the depression beyond Lake Assele (Figures 1a).

    Climate

    In terms of daily and monthly temperatures, the Dallol region currently holds the official record for highest average, year-round, monthly temperatures; in winter the daily temperature on the saltflat is consistently above 34°C and in summer every day tops 40°C, with some days topping 50°C (Figure 2; Oliver, 2005). These high temperatures and a lack of rainfall, typically less than 200 mm each year, place the Dallol at the hyperarid end of the world desert spectrum and so it lies at the more arid end of the BWh Köppen climate zone (Kottek et al., 2006; Warren, 2015).


    History of extraction of salt products and their transport (Table 1)

    Using little-changed extraction and transport methods, salt (halite) has been quarried by local Afar tribesmen for hundreds of years. First, using axes, a crust of pan salt is chopped into large slabs (Figure 3a). Then workers fit a set of sticks into grooves made by the axes. Next, working the stick, workers lever slabs of bedded salt, which is cut into rectangular tiles of standard size and weight, called ganfur (about 4kg) or ghelao (about 8kg). Tiles are stacked, tied and prepared for transport out of the depression on the backs of camels and donkeys (Figure 3b). Around 2,000 camels and 1,000 donkeys come to the salt flat every day to transport salt tiles to Berahile, about 75 km away. Previously, salt tiles were carried via camel train to the city of Mekele, some 100 km from the Danakil. Mekele, located in the Ethiopian highlands is known as the hub of Ethiopia’s former “white gold” salt trade and still today is known as the “old” salt caravan city. Today, the salt caravans walk the extracted salt to Berahile, located some 60 km from Mekele. From there, trucks transport the salt to Mekele. Each truck can transport up to 350 camel salt loads. From the Mekele salt market, Dallol salt blocks are transported and sold to all parts of Ethiopia for use mainly as table salt or as an add-on in animal feed. The lifestyle of the miners and the camel trains is likely to change in the next few decades as sealed roads are now under construction that will link Mekele to Dallol.


    Once potash (sylvite and carnallite) was discovered in the Dallol region in 1906, an Italian company by the name of Compagnia Mineraria Coloniale (CMC) established the first mining operation. In 1918 a railway was completed from the port of Mersa Fatma to a termination some 28 km from Dallol (Table 1). Rail construction took place from 1917-1918, using what was then the British and French “military-standard” 600 mm rail-gauge Decauville system. "Decauville" rail construction used ready-made sections of small-gauge track and so the trackway was rapidly assembled; <2 years to complete more than 50 km of track. Once completed, the railway transported extracted potash salt from the "Iron Point" rail terminal near Dallol, via Kululli to the port. Potash production is said to have reached some 50,000 metric tons in the 1920s, extracted from an area centred on the Crescent Deposit, which is located near the foot of uplifted lake beds on the southern flanks of Mt Dallol. However, significant salt production had ceased by the end of the 1920s, as large-scale mines in Germany, the USA, and the USSR began to supply the world market with cheaper product. Unsuccessful attempts to reopen potash production were made in the period 1920-1941. Between 1925-29 some 25,000 tons of sylvite were shipped by rail from the Dallol, with a product that averaged 70% KCl. After World War II, the British administration dismantled the railway and removed all traces of it. In 1951-1953, the Dallol Co. of Asmara sold a few tons of product from the Dallol.


    The potash concession title was transferred to the American “Ralph M. Parsons Company” (Parsons) at the end of the 1950s. Parsons initiated the first systematic exploration for potash in the Danakil depression and drilled more than 250 exploration holes during their 9-year evaluation campaign. Major potash resources were confirmed a few km west of Mount Dallol, in a mineralized zone that was named the “Musley” Deposit. Following on from positive exploration results, they began an engineering study to investigate potential processing and mining methods for the Musley Deposit and subsequently in October 1965 sank a shaft into the orebody. They installed underground mine facilities and established a pilot processing plant on surface, to investigate recovery from the bulk samples collected from the underground workings. They envisaged developing the Musley Deposit as a conventional room-and-pillar operation and to this end developed six underground drifts totalling some 805 m in length. Unconfirmed reports suggest that an influx of water flooded the mine (possibly triggered by a seismic event) and after failed attempts to solve the water problem, the activities Parsons ceased activities in 1968. As of end 2014, some salt block buildings built by the Italian and other companies still partially stand as ruins, along with rusting equipment.

    Based on the previous work conducted by Parsons, a German potash producer, Salzdetfurth AG (SAG), began a new exploration campaign in the Danakil Depression in 1968 and 1969. In addition to their work in the Dallol depression, SAG drilled a number of wells in a concession south of Lake Assale, and conducted a geological mapping campaign as far north as Lake Badda, on the border with Eritrea. SAG’s exploration work away from the known Dallol deposits did not prove fruitful as they drilled only one drill hole that reached the potash level. This drill hole, located approximately 25 km to the southeast of Mount Dallol, intersected a kainitite bed, with no sylvinite intersection. The SAG concession was returned to state authorities of Ethiopia. Subsequent drilling by other explorationists in this region has confirmed the deepening of the kainitite level to the southeast of Dallol and the lack of sylvinite at greater depths.

    Since the dismantling of the railway, there has been no high-volume transport system to carry potash product the Red Sea coast. Currently, the Ethiopian Government is constructing all-weather roads from Dallol to Mekele and Afdera When complete this road system will facilitate transport of future potential potash product from the Dallol to Afdera, from where existing roads provide access to Serdo and from there to the seaport of Tadjoura in Djibouti (Figure 1a). This section requires an addition 30 km of all-weather road to be completed to the coast and will facilitate cost-effective transport of potash product to the large agricultural markets of India and China. The transport distance to the Eritrean coast from Dallol is much shorter, but political considerations mean such a route is not a viable option at the present time.

    EVAPORITE DEPOSITIONAL PATTERNS IN OUTCROP

    Surficial sediment distributions outline classic drawdown facies belts in the Dallol region, with a wadi-fed alluvial fan fringe passing down dip into sandflats (local dune fields), dry mudflats (with springs), saline mudflats and ephemeral to perennial brine pans of Lake Assele (Figure 1b). The fans, especially along the western margin of the depression are indented or locally covered by a mostly younger succession of constant-elevation marine, biochemical and evaporitic sediments fringes or “bathtub rim” facies (Figure 4).

     

    Alluvial Fan fringe (Bajada) 

    Pleistocene alluvial/fluvial beds, exposed by local uplift, deflation and ongoing watertable lowering, outcrop about updip edges to the salt-crusted parts of the northern Danakil, and form low flat-topped plateaus or mesas on the plain. These mesas define the tops of alluvial fans aprons, which are heavily dissected and eroded by occasional storm runoff and rainfall. This fan fringe contains relatively fresh water lenses in a desert setting that is one of the world’s harshest (Kebede, 2012). Most of the depositionally active fans line the western margin of the basin and many of the downdip fan edges occur slightly up dip a still-exposed gypsum pavement (Figure 5a), showing depositional equilibration largely with an earlier higher lake stage, while others, such as the Musley fan, have flowed across cut into the gypsum pavement level and now feed water and sediment directly into the edges of the saltflat that defines the lower parts of the depression (Figure 4). Watercourses of the fans that have dissected earlier wadi (bajada) deposits as well as the earlier lacustrine gypsum and limestone pavements so create excellent windows into the stratigraphy of these units. Fan avulsion is indicated by palaeosol layers exposed by downcutting of younger streams (Figure 5b, c).

     

    The Musley fan characteristics are well documented by current and previous potash explorers in the basin as these permeable gravels and sands store a reliable water source for potential solution mining/ore processing in the Musley area and so has been cored by a number of proposed water wells. Internally, the fan is composed of interfingering layers and lenses of sand, gravel and clay (paleosols), with highly porous intervals in the sand and gravels (Figure 5b, c). Depth to the watertable varies from >2m to 60m, and salinities from 760 ppm to more than 23,400 ppm. The principal source of recharge is flash flooding, originating in Musley Canyon, which drains the Western Escarpment, along with minor inflows from the adjacent uplifted volcanic block and local highly intermittent rains (Figure 1a). Of six potential water wells drilled in the fan by the Ralph M. Parsons Company in the 1960s, four returned water of good quality (<2000 mg/l), while the other two had waters with salinities in excess of 20 g/l. Pumping test data indicate average transmissivity of the water-bearing beds around 870m2/day, with salinities in the fan increasing from west to east, approaching the saltflat.

    Chemical sediments outcropping in the depression

    Overall, surface sediment patterns in the Danakil depression define a depositional framework of brine drawdown, related to basin isolation from an earlier hydrographic (at surface) marine connection to the Red Sea, followed by stepped evaporative drawdown. This is indicated by fringing topographically-distinct belts or rims of now inactive coralgal carbonates and gypsum evaporites (aka “bathtub ring” patterns) that cover earlier Pleistocene and Neogene clastics (Figures 3a, e, Figure 4). These “rims” of marine limestone and subsequent gypsum were followed by today’s drawdown saline-pan halite-dominant hydrology (Figures 4, 7a-c). The current hydrological package of sediments encompassing the current drawdown episode lies atop and postdates the Pleistocene potash-hosting Lower Halite Formation in the depression and is probably equivalent to the uppermost part of the clastic overburden facies, as illustrated in the drilled and cored portions of the depression stratigraphy. As we shall discuss in the next blog, only the uppermost portion of the recovered core stratigraphy has equivalents in current depression hydrology (Figure 6). 


    In earlier work, some authors interpreted the fringing belts, especially the exposed coralgal reef belt, as being possibly of Pliocene or even Miocene age. However, when one looks at the stratiform nature of the outcrop trace of both the reef belt and the gypsum belt, and the carapace nature of its depositional boundaries in the field, it is immediately apparent they must be younger (Figure 5a, c; Figure 7). Both the reefal and gypsum belts track horizontal hydrological intersections with the landscape, in what is an ongoing volcanogenic and tectonically active depression. When the reefal belt image is overlain by a DEM it shows the reef belt is consistently at sea level (Figure 1c). If the outcrops of the reef belt and the gypsum pavement were older than late Pleistocene or Holocene, then ongoing episodes of tectonism and volcanism would have modified the elevations of the two outcrop belts in the landscape, as is seen in Miocene redbed outcrops. These underlying and centripetal Miocene sections clearly show the influence of ongoing tilting and tectonism and hence why the flat-lying tops to the reef and gypsum belts imply a late Pleistocene-Holocene (Figure 5d).

    That is, the topographic distribution of the top of the reef facies, which lies within a metre or two of current sea level, implies that the Danakil depression had a relatively recent connection to the Red Sea. The pristine preservation of aragonitic corals and sand dollars in the adjacent marls suggest the connection was either related to the penultimate interglacial (around 104, 000 years ago) or to an early Holocene transgression into the depression. Bannert et al. (1970) assign a C14 age of 25.4-34.5 ka to this formation. However, we consider this is unlikely as DEM overlay levelling shows the reef rim, wherever it outcrops, lies within a meter of current sealevel. World eustacy clearly shows that sealevel was more than 50-60m below its present level some 25,000-30,000 years ago. A 25-35 ka determination of the reef rim would require the whole basin was subject to a single basinwide wide vertical uplift event that did not fragment or disturb the lateral elevation of the rim.

    The coralgal reef terrace indicates normal marine water were once present in the Dallol depression, while the occurrences of the stratiform gypsum pavement are consistent with a former arid lake hydrology at a somewhat lower elevation than the reef rim (Figures 1c, 5a). Like the reef rim, the gypsum pavement fringe defines a consistent elevation level or surface, most clearly visible along the western margin of the present salt flat. It is the result of gypsum deposition during a period of drawdown associated with brine level stability, subsequent to the isolation of the depression from its former “at-surface” marine connection. During this time gypsum accumulated as a stack of subaqueous aligned gypsum beds, along with a series of gypsiferous tufas and rhizoconcretions in zones about the more marginward spring-fed parts of the gypsiferous lake margin (Figure 7d-f). The evolution from marine waters that deposited the reefs and adjacent echinoid-rich lagoonal marls at a higher level in the depression (the lit zone) into a more saline seepage-fed system, with no ongoing marine surface connection to the Red Sea is indicated by the diagenetic growth of large lenticular (“bird’s-beak”) gypsum crystals within the marine marls and the dominant subqueous bottom-nucleated textures in the gypsum beds. In a similar way, the now-outcropping subaqueous-gypsum drawdown rim deposits, located at higher elevations than current saline pan levels typify other drawdown saline lakes in the Afar region, such as Lake Asal in Djibouti, all such occurrences indicate an earlier, somewhat less saline, hydrological equilibrium level (Warren, 2015).


    Active today is the lowest parts of the Dallol saltflat is an ephemeral saltpan hydrology indicated by bedded salt crusts dominated by megapolygonal crusts made up of aligned-chevron halite stacks separated by mm-cm thick mud layers . This current pan hydrology is associated with even greater drawdown levels compared to the former gypsum-dominant hydrology (Figure 8). Current deposits, made up a series of stacked brine-pan salt sheets,  are still quarried as a renewable resource by the local tribesmen (Figure 3). These modern brine flats accumulate pan halite whenever the Lake Assele brine edge (strandline) is periodically blown back and forth over the modern brineflat. It driven by southerly winds, which are frequent in the annual weather cycle, and can move thin sheets of brine kilometres across the pan in a few hours (Figure 1a, Figure 8). Superimposed on this southerly supply of brine is an occasional land-derived sheetflood event, driven by rare rainstorms and the deposition of silt-mud layers from water sheets sourced from the adjacent wadi belt. This ephemeral brineflat hydrology is stable with respect to the current climate (groundwater inflow ≈ outflow). It means the current brineflat of the northern Danakil low is  accumulating bedded pan salt at an even lower topographic level in the basin than the surrounding gypsum pavement, so implying today’s halite-dominant pan beds form under more arid conditions (less humid, more drawndown) than that of the gypsum pavement.


    This stepped (reef to gypsum to halite) late-Pleistocene-early Holocene hydrology, captured in the modern surficial geology of the Dallol Depression, likely postdates a somewhat wetter (humid) climatic period indicated by the widespread deposition of a clastic overburden unit, atop the Upper Halite Formation (UHF; Figure 6). That is, the modern hydrology in present-day Lake Assale, and the adjacent saline mud flats of the Dallol pan, is not the same hydrology as that which precipitated the massive salt of the Upper Halite Formation (UHF). A potash-free halite unit extensively cored beneath the present clastic-dominated saline pan (to be discussed in the next blog). Texturally and hydrologically the depositional system of stacked salt crusts, which dominates the upper part of the UHF in the cored wells, is similar to today's halite-dominated passage from the salt flat into the subaqueous Lake Assale. However, as we shall see, a wetter moister period, dominated by sheetfloods and higher amounts of clastics, separates the two hydrological events in all the cored wells. Today's outcrop geology of alternating saltpan and clastic beds are a different to marine-fed seepage hydrology formed the Lower Halite Formation (LHF), with its potash bittern cap (Houston Formation). 

    Most importantly there is no evidence of primary potash deposition in the modern lake/ pan hydrology of the Dallol saltflat. It is clear that the world-famous bedded potash (mostly kainitite) units of the Danakhil accumulated in a bittern hydrology that is not present in today's Dallol depositional hydrology (Blog 2). As we shall see, Holocene potash only occurs in the vicinity of the Dallol Volcanic Mound, where uplift has moved older, formerly buried, potash beds into a more active hydrothermal hydrology (Blog 3).

    References

    Bannert, D., J. Brinckmann, K. C. Käding, G. Knetsch, M. KÜrsten, and H. Mayrhofer, 1970, Zur Geologie der Danakil-Senke: Geologische Rundschau, v. 59, p. 409-443.

    Ercosplan, 2011, Resource Report for the Danakhil Potash Deposit, Afar State Ethiopia, comissioned by Allana Potash. Document EGB 11-008.

    Hardie, L. A., 1990, The roles of rifting and hydrothermal CaCl2 brines in the origin of potash evaporites: an hypothesis: American Journal of Science, v. 290, p. 43-106.

    Holwerda, J. G., and R. W. Hutchinson, 1968, Potash-bearing evaporites in the Danakil area, Ethiopia: Economic Geology, v. 63, p. 124-150.

    Hutchinson, R. W., and G. G. Engels, 1970, Tectonic significance of regional geology and evaporite lithofacies in northeastern Ethiopia: Philosophical Transactions of the Royal Society, v. A 267, p. 313-329.

    Kebede, S., 2012, Groundwater in Ethiopia: Features, numbers and opportunities, Springer.

    Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006, World Map of the Köppen-Geiger climate classification updated: Meteorologische Zeitschrift, v. 15, p. 259-263.

    Warren, J. K., 2010, Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits: Earth-Science Reviews, v. 98, p. 217-268.

    Warren, J. K., 2015, Evaporites: A compendium (ISBN 978-3-319-13511-3) Released August 2015: Berlin, Springer, 1600 p.


    Recent Posts


    Tags

    Belle Isle salt mine dissolution collapse doline base metal extrasalt oil gusher DHAL McArthur River Pb-Zn well logs in evaporites capillary zone Pangaea anthropogenically enhanced salt dissolution Jefferson Island salt mine Evaporite-source rock association Karabogazgol silica solubility 18O Lomagundi Event Muriate of potash evaporite-metal association Ingebright Lake Dead Sea karst collapse hectorite Neoproterozoic Oxygenation Event magadiite blowout K2O from Gamma Log gassy salt Archean Crescent potash recurring slope lines (RSL) water in modern-day Mars Atlantis II Deep Boulby Mine Calyptogena ponderosa mass die-back vadose zone Precambrian evaporites basinwide evaporite High Magadi beds Ethiopia silicified anhydrite nodules wireline log interpretation authigenic silica Koppen climate mummifiction gas in salt Salar de Atacama salt tectonics source rock venice Great Salt Lake stevensite nuclear waste storage Five Island salt dome trend vanished evaporite dihedral angle Stebnik Potash evaporite chert dark salt evaporite dissolution well blowout Hyperarid Badenian mirabilite Density log brine lake edge ancient climate Clayton Valley playa: Bathymodiolus childressi palygorskite waste storage in salt cavity Ripon Weeks Island salt mine sulfur water on Mars York (Whitehall) Mine salt seal Sulphate of potash halite tachyhydrite Pilbara antarcticite sulphur endosymbiosis salt karst meta-evaporite anomalous salt zones allo-suture gas outburst marine brine organic matter Musley potash Turkmenistan salt suture gypsum dune methane lapis lazuli Gamma log causes of glaciation trona lot's wife sedimentary copper halotolerant evaporite-hydrocarbon association cryogenic salt evaporite karst natural geohazard sepiolite halokinetic Kara bogaz gol geohazard sulfate Dallol saltpan salt mine methanogenesis Lake Peigneur climate control on salt NaSO4 salts snake-skin chert CaCl2 brine MOP gem North Pole knistersalz Zaragoza rockburst CO2: albedo doline hydrogen CO2 lazurite Quaternary climate deep seafloor hypersaline anoxic basin Neoproterozoic vestimentiferan siboglinids sulphate salt periphery Catalayud carnallitite Platform evaporite HYC Pb-Zn brine evolution hydrological indicator H2S circum-Atlantic Salt Basins potash ore price Paleoproterozoic Oxygenation Event Thiotrphic symbionts lunette mine stability sinjarite intrasalt lithium battery 18O enrichment jadarite freefight lake perchlorate Lake Magadi solikamsk 2 Neutron Log Corocoro copper RHOB halophile hydrothermal potash Red Sea Seepiophila jonesi sodium silicate hydrohalite SedEx Zabuye Lake Mesoproterozoic carbon oxygen isotope cross plots auto-suture alkaline lake intersalt lithium brine black salt DHAB astrakanite Lamellibrachia luymesi methanotrophic symbionts Dead Sea caves Mega-monsoon hydrothermal karst collapse doline MVT deposit supercontinent 13C Messinian flowing salt Deep Danakhil Depression, Afar Kalush Potash namakier Koeppen Climate deep meteoric potash salt leakage, dihedral angle, halite, halokinesis, salt flow, seal capacity carbon cycle crocodile skin chert nacholite NPHI log Realmonte potash well log interpretation bedded potash potash zeolite Deep seafloor hypersaline anoxic lake potash ore Magdalen's Road lithium carbonate African rift valley lakes Warrawoona Group Stebnyk potash nitrogen salt trade Hell Kettle Proterozoic subsidence basin epsomite halite-hosted cave sinkhole eolian transport cauliflower chert bischofite Sumo GR log saline clay stable isotope 13C enrichment Ure Terrace SOP salt ablation breccia kainitite Hadley cell:

    Archive