Salty Matters

The Blog is written by me, John Warren. Once every three or four weeks or so I will post an article or two on an evaporite topic that has piqued my interest. On the Saltwork Publications webpage (under "the Works") there is a growing library of pdfs and epubs based on these blogs. These articles on the website have much higher resolution extractable graphics in than in the blog. There is also a link to this set of pdfs and epubs on the home page (www.saltworkconsultants.com).

Salt Dissolution (3 of 5): Natural Geohazards

John Warren - Tuesday, October 31, 2017


Introduction

Surface constructions and other anthropogenic activities atop or within evaporite karst terranes is more problematic than in subcopping carbonate terranes due to inherently higher rates of dissolution and stoping (Yilmaz et al., 2011; Cooper and Gutiérrez, 2013; Gutiérrez et al., 2014). Overburden collapse into nearsurface gypsum caves can create stoping chimneys, which break out at the surface as steep-sided dolines, often surrounded by broader subsidence hollows. Such swallow-holes, up to 20 m deep and 40 m wide, continue to appear suddenly and naturally in gypsum areas throughout the world.

Unlike the relatively slow formation of limestone karst, gypsum/halite karst develops on a human/engineering time-scale and can be enhanced by human activities (Warren, 2016, 2017). For example, in 2006, the Nanjing Gypsum mine in China broke into a phreatic cavity in a region of gypsum karst, driving complete flooding of the mine in some three days. Associated groundwater drainage caused a sharp drop in the local piezometric level of up to 90 m in a well in nearby Huashu village. Resultant ground subsidence severely damaged nearby roads and buildings (Wang et al., 2008). In Ukraine, dewatering of gypsum karst to facilitate sulphur mining substantially increased the rate of gypsum dissolution and favoured the expansion of sinkholes within an area affected by the associated cones of water-table depression (Sprynskyy et al., 2009). Natural evaporite karst enhanced by intrastructure focusing of drainage creates the various scales of problem across the Gypsum Plain of West Texas and New Mexico (Stafford et al., 2017).

Although halite is even more susceptible to rapid dissolution than gypsum, it typically is not a major urban engineering problem; large numbers of people simply do not like to live in a climate that allows halite to make it to the surface. However, in the Dead Sea region, the ongoing lowering of the water level encouraged karstic collapse in newly exposed mudflats and has damaged roads and other man-made structures (Frumkin et al. 2011; Shviro et al., 2017). Catastrophic doline collapse atop poorly managed halite/potash mines and solution brine fields is an additional anthropogenically-induced or enhanced geohazard in developed regions is discussed in detail in Warren, 2016 (Figure 1).


Gypsum karst is a documented natural hazard in many parts of Europe (Figure 2), and similar areas of shallow subcropping gypsum are common in much of the rest of the world (Table 1). For example, areas surrounding the city of Zaragoza in northern Spain are affected, as is the town of Calatayud (Gutiérrez and Cooper, 2002; Gutiérrez, 2014). Gypsum dissolution is responsible for subsidence and collapse in many urban areas around northern Paris, France (Toulemont, 1984), in urban areas in and around Stuttgart and other towns peripheral to the Harz Mountains in Germany (Garleff et al., 1997), in Pasvalys and Birzai in Lithuania (Paukstys et al., 1999), in the Muttenz-Pratteln area in northwestern Switzerland (Zechner et al., 2011), in the Perm area of Russia (Trzhtsinsky, 2002), in the Sivaz region of Turkey (Karacan and Yilmez, 1997), in the region centred on the city of Mosul in northern Iraq (Jassim et al., 1997) and in a number of areas of rapid urban development in eastern Saudi Arabia (Amin and Bankher, 1997a, b). Large subsidence depressions caused by gypsum dissolution in China have opened up in the Taiyuan and Yangquan regions of Shanxi Coalfield and the adjacent Hebei Coalfield.


Variation in the watertable level, induced by groundwater pumping or uncontrolled brine extraction, can be an anthropogenic trigger for dolines surfacing. As the watertable declines it causes a loss of buoyant support to the ground, it also increases the flow gradient and water velocity, which facilitates higher rates of crossflow and deeper aquifer recharge in subsequent floods and so reduces the geomechanical strength of the cover and washes away roof span support (Figures 1, 3). Dolines can also be associated with groundwater quality issues. Collapse dolines or sinkholes are frequently used as areas or sumps for uncontrolled dumping industrial and domestic waste. Because of the direct connection between them and the regional aquifer, uncontrolled dumping can cause rapid dispersion of chemical and bacterial pollutants in the groundwater. In the case of Riyadh region Saudi Arabia, a lake of near-raw sewage has appeared in Hit Dahl (cave) and is likely related to the increased utilisation of desalinated water for sanitation and agriculture (Warren, 2016). In the Birzai region of Lithuania numerous sinkholes developed in Devonian gypsum subcrop are in direct connection across the regional hydrology. Accordingly, the amount of agricultural fertilizer use is limited to help protect groundwater quality.

One of the problems associated with rapid surfacing of evaporite collapse features is that any assignment of sinkhole cause will typically lead to an assignment of blame, particulary when anthropogenic infrastructure has been damaged or destroyed by the collapse, or lives may have been lost. Areas of natural evaporite karst are typically areas of relatively shallow evaporites. Shallow evaporites make such regions suitable for extraction via conventional or solution mining. When a collapse does occur in a mined area, one group (generally the miners) has a vested interest in arguing for natural collapse, the others, generally the lawyers and their litigants, will argue for an anthropogenic cause. The reality is usually a combination of natural process enhanced to varying degrees by human endeavours. In the examples in this section, much of the driving process for the collapse is natural, while the cause of any unexpected karst-related disaster is typically geological ignorance combined with political/community intransigence. See Chapter 13 for a further discussion of karst and stope examples that include collapses and explosions where the anthropogenic drivers can dominate.

Problems in the Ripon area, Yorkshire, UK

The town of Ripon, North Yorkshire, and town’s surrounds experiences the worst ongoing gypsum-karst related subsidence in England (Figures 3, 4; Cooper and Waltham, 1999). Some 43 events of subsidence or collapse in the caprock over the Ripon gypsum have occurred over the last 160 years, within an area of 7 km2 (Figures 4). This gives a mean rate of one new sinkhole every 26 years in each square kilometre. Worldwide, the highest documented event rate occurs in Ukraine, in an area of thin and weak clay caprocks above interstratal gypsum karst, where new sinkholes appear at a rate of 0.01 to 3.0 per year per km2 (Waltham et al., 2005). In the Ripon area, numerous sags and small collapses also typify surrounding farmlands. Subsidence features are typically 10-30m in diameter, reach up to 20m in depth and can appear at the surface in a matter of hours to days (Figure 3). To the east of the town, one collapse sinkhole in the Sherwood Sandstone is 80 m in diameter and 30 m deep, perhaps reflecting the stronger roof beam capacity of the Sherwood Sandstone.

When a chimney breaks through, the associated surface collapse is very rapid (Figure 3 b-e). For example, one such subsidence crater, which opened up in front of a house on Ure Bank terrace on 23rd and 24th April, 1997, is documented by Cooper (1998.) as follows (Figure 3b).

“...The hole grew in size and migrated towards the house, to measure 10m in diameter and 5.5m deep by the end of Thursday. Four garages have been destroyed by the subsidence. This collapse was the largest of one of a series that have affected this site for more than 30 years; an earlier collapse had demolished two garages on the same site, and a 1856 Ordnance Survey map shows a pond on the same site. The hole is cylindrical but will ultimately fail to become a larger, but conical, depression. As it does so, it may cause collapse of the house, which is already damaged, and the adjacent road. The house and several nearby properties have been evacuated and the nearby road has been closed. The gas and other services, which run close to the hole, have also been disconnected in case of further collapse.”

Cooper (1998) found the sites of most severe subsidence in the Ripon area (including the house at Ure Terrace and in the vicinity of Magdelen's Road) are located at the sides of the buried Ure Valley, an area where the significant volumes of water seeps from the gypsum karst levels into the river gravels (Figure 4). In 1999 the Ure Terrace sinkhole was filled using a long conveyor belt that was cantilevered over the hole so that no trucked needed to back up close to the sinkhole opening. The hole was surcharged to a height of 0.5m. The hole remains unstable, but the collapse of the fill is monitored to document fill performance and the fill is periodically topped up. After the sinkhole was filled, the road adjacent to the sinkhole was re-opened and the site of the sinkhole fenced. The severely damaged Field View house remains standing next to the sinkhole. The nearby Victorian Ure lodge was not directly damaged by the 1997 sinkhole, but its western corner fell within the council-designated damage zone, and was left unoccupied. It fell into disrepair and was subsequently demolished (Figure 3b). A similar fate befell houses damaged by the surfacing of collapse sinkholes in and around Magdelen's Road, which is located a few hundred metres from Ure Terrace (Figure 3c-e). Shallow subcropping Zechstein gypsum (rehydrated anhydrite) occurs in two subcropping bedded units in this area, one is in the Permian Edlington and the other is in the Roxby Formation (Figure 4b). Together they form a subcrop belt about a kilometre wide, bound to the west by the base of the lowest gypsum unit (at the bottom of the Edlington Formation) and to the east by a downdip transition from gypsum to anhydrite in the upper gypsum-bearing unit of the Roxby Formation. The spatial distribution of subsidence features within this belt relates to joint azimuths in the Permian bedrock, with gypsum maze caves and subsidence patterns following the joint trends (Cooper, 1986). Most of the subcropping gypsum is alabastrine in the area around Ripon, while farther to the east, where the unit is thicker and deeper, the calcium sulphate phase is still anhydrite.

Fluctuations in the watertable level tied to heavy rain or long drought are thought to be the most common triggering mechanism for subsidence transitioning to sinkhole collapse. Many of the more catastrophic collapses occur after river flooding and periods of prolonged rain, which tend to wash away cavern roof span support. Subsidence is also aggravated by groundwater pumping; first, it lowers the watertable and second, it induces considerable crossflow of water in enlarged joints in the gypsum. When recharged by a later flood, the replacement water is undersaturated with respect to gypsum.


Thomson et al. (1996) recognised four hydrogeological flow units driving karst collapse in the Ripon area (Figure 4):

1) Quaternary gravels in the buried valley of the proto-River Ure

2) Sherwood Sandstone Group

3) Magnesian Limestone of the Brotherton Fm. and the overlying/adjacent gypsum of the Roxby Fm.

4) Magnesian limestone of the Cadeby Fm. plus the overlying/adjacent gypsum of the Edlington Fm.

Local hydrological base level within this stratigraphy is controlled by the River Ure, especially where the buried Pleistocene valley (proto-Ure) is filled by permeable sands and gravels, as these unconsolidated sediments, when located atop a breached roof beam, are susceptible to catastrophic stoping to base level (Figure 4). In the area around Ripon the palaeovalley cuts down more than 30 m, reaching levels well into the Cadeby Formation, so providing the seepage connections or pathways between waters in all four units wherever they intersect the palaeovalley. There is considerable groundwater outflow along this route with artesian sulphate-rich springs issuing from Permian strata in contact with Quaternary gravels of the buried valley (Cooper, 1986, 1995, 1998).

The potentiometric head comes from precipitation falling on the high ground of the Cadeby formation to the west and the Sherwood Sandstone to the east. Groundwater becomes largely confined beneath glacial till as it seeps toward the Ure Valley depression, but ultimately finds an exit into the modern river via the deeply incised sand and gravel-filled palaeovalley of the proto-Ure. Waters recharging the Ure depression pass through and enlarge joints and caverns in the gypsum units of the Edlington and Roxby Formations, so the highest density of subsidence features are found atop the sides of the palaeovalley. This region has the greatest volume of artesian discharge from aquifers immediately beneath the dissolving gypsum bed. Although created as an active karst valley, the apparent density of subsidence hollows is lower on the present Ure River floodplain than the surrounding lands as floodplain depressions are constantly filled by overbank sediments (Figure 4b).

Cooper (1998) defined 16 sinkhole variations in the gypsum subsidence belt at Ripon, all are types of entrenched, subjacent and mantled karst. Changes in karst style are caused by; the type of gypsum, the nature and thickness of the overlying deposits, presence or absence of consolidated layers overlying the gypsum and the size of voids/caverns within the gypsum.

To the west of Ripon, the gypsum of the Edlington Formation lies directly beneath glacial drift. These unconsolidated drift deposits and the loose residual marl atop the dissolving gypsum gradually subside into a pinnacle or suffusion (mantled) karst. But between Ripon town and the River Ure, the limestone of the Brotherton Formation overlies the Edlington Formation. There the karst develops as large open caverns beneath strong roof spans (entrenched karst). Ultimate collapse of the roof span creates rapid upward-stoping caverns in loosely consolidated sediment. Stopes break though to the surface as steep-sided collapse dolines or chimneys with sometimes catastrophic results. A similar entrenched situation is found east of the Ure River but there karstified gypsum units of both the Edlington and the Roxby formations are involved.


There are also thick beds of gypsum in the Permian Zechstein sequence that forms the bedrock in the Darlington area. In this area, subsidence features attributed to gypsum dissolution are typically broad shallow depressions up to 100 m in diameter, and the ponds, known as Hell Kettles, are the only recognized examples of steep-sided subsidence hollows around Darlington (Figure 5). Historical records suggest that one of the ponds formed in dramatic fashion in AD 1179 (Cooper 1995). The southern pond appears to be the most likely one to have formed at that time because it is many metres deep and is fed from below by calcareous spring water that is rich in both carbonate and sulphate. The 2D profiles have revealed evidence of foundering in the limestone of the Seaham Formation at depths of c. 50 m (Figure 5; Sargent and Goulty, 2009). The foundering is interpreted to have resulted from dissolution of gypsum in the Hartlepool Anhydrite Formation at ≈ 70 m depth. The reflection images of the gypsum itself are discontinuous, suggesting that its top surface has karstic topography. The 3D survey also acquired and interpreted by Sargent and Goulty (2009) reveals subcircular hollows in the Seaham Formation up to 20 m across, which are again attributed to foundering caused by gypsum dissolution.


Problems with Miocene gypsum, Spain

Karstification has led to problems in areas of subcropping Miocene gypsum in the Ebro and Calatayud basins, northern Spain (Figure 6). Cliff sections and road cuts indicate the widespread nature of karstification in the gypsum outcrops and subcrops in Spain (Figure 7b) Areas affected are defined by subsidence or collapse in Quaternary alluvial overburden and include; urban areas, communication routes, roads, railways, irrigation channels and agricultural fields (Figure 7a; Soriano and Simon, 1995; Elorza and Santolalla, 1998; Guerrero et al., 2013; Gutiérrez et al., 2014). In the region there can be a reciprocal interaction between anthropic activities and sinkhole generation, whereby the ground disturbance engendered by human activity accelerates, enlarges and triggers the creation of new sinkholes. Subsidence is particularly harmful to linear constructions and buildings and numerous roads, motorways and railways have been damaged (Figure 7a, b). Catastrophic collapse and rapid karst chimneying into roads and buildings can have potentially fatal consequences. For example, several buildings have been damaged around the towns of Casetas and Utebo. In the Portazgo industrial estate some factories had to be pulled down due to collapse-induced instability (Castañeda et al., 2009). A nearby gas explosion was attributed to the breakage of a gas pipe caused by subsidence. The local water supply is also disrupted by subsidence and pipe breakage so that 20,000 inhabitants periodically lose their water supply. The most striking example of subsidence affecting development comes from the village of Puilatos, in the Gallego Valley. In the 1970's this town was severely damaged by subsidence and abandoned before it could be occupied (Cooper 1996).


Collapse affects irrigation channels in the countryside with substantial economic losses (Elorza and Santolalla, 1998). In 1996 a doline collapse surfaced and cut the important Canal Imperial at Gallur village. New dolines often form near unlined irrigation canals. The ongoing supply of fresh irrigation waters to field crops can also encourage sinkhole generation in the fields. Though not directly visible, natural sinkholes also form in the submerged beds of river channels cutting regions of subcropping gypsum.

On December 19th, 1971, a bus fell from a bridge into the Ebro River at Zaragoza, near where the ‘San Lazaro well’ (a submerged gypsum sinkhole) is located (Figure 8a). Ten people lost their lives in this accident , while the remainder of the passengers were rescued, after being stranded on the bus roof in the flowing river for some hours (Figure 8b). After survivors were rescued, river waters washed the bus from the foot of the bridge supports into the nearby 'San Lazaro well (collapse sinkhole) in the water-covered floor of the river. Nine of the ten bodies in the bus were never found, although the bus was later recovered from the sinkhole. Locals suggested that bodies were carried deeper into the various interconnect phreatic sinkhole caverns fed by this losing stream.


Karstification in the Zaragoza region is characterised by the preferential intrastatal dissolution of glauberite bed, which are more soluble than the gypsum interbeds, this leads to collapse and rotation of gypsum blocks and river capture (Guerrero et al., 2013).

Sometimes even well-intentioned attempts to remediate culturally significant buildings under threat of evaporite karst collapse can exacerbate collapse problems. Gutiérrez and Cooper (2002) cite examples from the city of Calatayud, Spain. Subsidence-induced differential loading across doline edges drives the tilting of the 25-metre high tower (mudéjar) of the San Pedro de Los Francos church, which leans towards and overhangs the street by about 1.5 metres. (Figure 9) In places, the brickwork of the church indents the pre-existing tower fabric, which probably dates from the 11th Century or the beginning of the 12th Century. This indentation and the non-alignment of the church and the tower walls indicates that most of the tower tilting occurred prior to the construction of the church. In 1840, the upper 5m of the tower was removed and the lower part buttressed for the safety of the Royal family, who visited the town and stayed in the palace opposite. On 3rd June 1931, San Pedro de Los Francos church was declared a “Monument of Historical and Artistic value.” Due to its ruinous condition, the church was closed to worship in 1979. Micropiling to improve the foundation was started in 1994, but this corrective measure was interrupted when only half of the building was underpinned. Very rapid differential settlement of the building took place in the following year, causing extensive damage and aggravating the subsidence problem.


Colegiata de Santa María la Mayor was constructed between the 13th and 18th centuries, it has an outstanding Mudéjar (a 72 m high tower) and numerous Renaissance features; it is considered the foremost monument in the city of Cataluyud. As with the San Pedro de los Francos Church, recent micropiling work, applied to only one part of the cloister, has been followed by alarming differential movements that have drastically accelerated the deterioration of the building. Large blocks have fallen from the vault of the “Capitular Hall” and cracks up to 150 mm wide have opened in the brickwork of the back (NW) elevation, which has now been shored up for safety. The dated plaster tell-tales placed in these cracks to monitor the displacement demonstrate the high speed of the deformation produced by subsidence in recent years. On the afternoon of 10 September 1996, the fracture of a water supply pipe flooded the cloisters and the church with 100 mm of muddy water. Ten years earlier a similar breakage and flood had occurred. These breaks in the water pipes are most likely related to karst-induced subsidence. Once they occur, the massive input of water to the subsurface may trigger further destruction via enhanced dissolution, piping and hydrocollapse (Gutiérrez and Cooper, 2002).


Gypsum karst in Mosul, Iraq

A similar quandary of multiple areas of structural damage from gypsum-induced subsidence affects large parts or the historic section of the city of Mosul in northern Iraq (Jassim et al., 1997). The main part of its old quarter is over a century old and some buildings are a few hundred years old. Mosul lies on the northeastern flank of the Abu Saif anticline and near to its northern plunge (Figure 10a). It was built on the western bank of the Tigris River on a dip slope of Middle Miocene Fatha limestone that is directly underlain by bedded gypsum and green marl (equivalent to Lower Fars Formation). Houses in the old city were built on what seemed to be at the time a very sound rock foundation.

Water distribution in the city was done on mule back in the early part of last century and the estimated water consumption did not exceed 10 litres per person per day (Jassim et al., 1997). Discharge from households was partly to surface drainage and partly to shallow and small septic tanks. The modern piped system of water distribution did not start until the 1940s, resulting in a sudden increase in water consumption (presently around 200 litres per person per day) and it was not associated with a complementary sewer system. Increased water consumption meant larger and deeper septic tanks were dug at the perimeter of buildings (which never seemed to fill) resulting in a dramatic increase in water percolating downwards, water that was also more corrosive than previously due to the increased use of detergents and chlorination. This water passes through the permeable and fractured limestone to the underlying gypsum. On its way through the limestone it enlarges and creates new dissolution cavities, but eventually finds its way into the older gypsum karst maze, which is then further widened as water drains back into the Tigris (Figure 10b). Caverns in the gypsum enlarge until the roof span collapses. Since the 1970s more and more buildings in the old city have fractured and many are subject to sudden collapse. The problem is further intensified due to the expansion of the city in the up-dip direction (west and southwest) including the construction of industrial, water-dependent centres with integrated drainage. Water seeping/draining from these newly developed up-dip areas eventually passes under the old city before discharging in the Tigris river. The process was slightly arrested in the 1980s by the completion of a drainage system for the city, but the degradation of the old city continues.

Coping: man-made structures atop salts

The towns of Ripon in the UK and Pasvales and Birzai in Lithuania house some 45,000 people, who currently live under the ongoing threat of catastrophic subsidence, caused by natural gypsum dissolution (Paukstys et al., 1999). Special measures for construction of houses, roads, bridges and railways are needed in these areas and should include: incorporating several layers of high tensile heavy duty reinforced plastic mesh geotextile into road embankments and car parks; using sacrificial supports on bridges so that the loss of support of any one upright will not cause the deck to collapse; extending the foundations of bridge piers laterally to an amount that could span the normal size of collapses; and using ground monitoring systems to predict areas of imminent collapse (Cooper 1995, 1998).


Dams to store urban water supplies are costly structures and failure can lead to disaster, large scale mortality and financial liability (for example, Cooper and Gutiérrez, 2013). For example, at two and a half minutes before midnight on March 12, 1928, the St. Francis Dam (California) failed catastrophically and the resulting flood killed more than 400 people (Figure 11). The collapse of the St. Francis Dam is considered to be one of the worst American civil engineering disasters of the 20th century and remains the second-greatest loss of life in California’s history, after the 1906 San Francisco earthquake and fire. The collapse was partly attributed to dissolution of gypsum veins beneath the dam foundations. The Quail Creek Dam, Utah, constructed in 1984 failed in 1989, the underlying cause being an unappreciated existence of, and consequent enlargement of, cavities in the gypsum strata beneath its foundations.

Unexpected water leakage from reservoirs, via ponors, sinkholes and karst conduits, leads to costly inefficiency, or even project abandonment. Unnaturally high hydraulic gradients, induced by newly impounded water, may flush out of the sediment that previously blocked karst conduits. It can also produce rapid dissolutional enlargement of discontinuities, which can quickly reach break-through dimensions with turbulent flow. These processes may significantly increase the hydraulic permeability in the region of the dam foundation, on an engineering time scale.

Accordingly, numerous dams in regions of the USA underlain by shallow evaporites either have gypsum karst problems, or have encountered gypsum-related difficulties during construction (Johnson, 2008). Examples include; the San Fernando, Dry Canyon, Buena Vista, Olive Hills and Castaic dams in California; the Hondo, Macmillan and Avalon dams in New Mexico; Sandford Dam in Texas; Red Rock Dam in Iowa; Fontanelle Dam in Oklahoma; Horsetooth Dam and Carter Dam in Colorado and the Moses Saunders Tower Dam in New York State. Up to 13,000 tonnes of mainly gypsum and anhydrite were dissolved from beneath a dam in Iraq in only six months causing concerns about the dam stability (Figure 13). In China, leaking dams and reservoirs on gypsum include the Huoshipo Dam and others in the same area. The Bratsk Dam in eastern Siberia is leaking, and in Tajikistan the dam for the Nizhne-Kafirnigansk hydroelectric scheme was designed to cope with active gypsum dissolution occurring below the grout curtain. Gypsum karst in the foundation trenches of the Casa de Piedra Dam, Argentina and El Isiro Dam in Venezuela, caused difficult construction conditions and required design modifications.


Another illustration of the problems associated with water retaining structures and the ineptitude, or lack of oversight, by some city planners comes from the town of Spearfish, South Dakota (Davis and Rahn, 1997 ). As discussed earlier in this chapter, the Triassic Spearfish Formation contains numerous gypsum beds in which evaporite-focused karst landforms are widely documented across its extent in the Black Hills of South Dakota (Figure 12). The evaporite karst in the Spearfish Fm. has caused severe engineering problems for foundations and water retention facilities, including wastewater stabilization sites. One dramatic example of problems in water retention atop gypsum karst comes from the construction in the 1970s of now-abandoned sewage lagoons for the City of Spearfish.

Despite warnings from local ranchers, the Spearfish sewage lagoons were built in 1972 by city authorities on alluvium atop thick gypsum layers of Spearfish Formation. Ironically, at one point during lagoon construction, a scraper became stuck in a sinkhole and required four bulldozers to pull it out. Once filled with sewage, within a year the lagoons started leaking badly; the southern lagoon was abandoned after four years because of ongoing uncontrollable leaks, and the northern lagoon did not completely drain, but could not provide adequate retention time for effective sewage treatment. Attempts at repairs, including a bentonite liner, were ineffective, and poorly treated sewage discharged beneath the lagoon’s berm into a nearby surface drainage. The lagoons were abandoned completely in 1980. This was after a US $27-million lawsuit was filled in 1979 by ranchers whose land and homes were affected by leaking wastewater. A mechanical wastewater treatment plant was constructed nearby on an outcrop of the non-evaporitic Sundance Formation. The engineering firm that designed the facility without completing a knowledgeable geological site survey was reorganised following the lawsuit.

Likewise, the development of Chamshir Dam atop Gascharan Formation outcrop and subcrop in Iran is likely to create ongoing infrastructure cost and water storage problems (Torabi-Kaveh et al., 2012). The site is located in southwest of Iran, on Zuhreh River, 20 km southeast of Gachsaran city. The area is partially covered by evaporite formations of the Fars Group, especially the Gachsaran Formation. The dam axis is located on limestone beds of Mishan Formation, but nearly two-thirds of the dam reservoir is in direct contact with the evaporitic Gachsaran Formation. Strata in the vicinity of the reservoir and dam site have been brecciated and intersected by several faults, such as the Dezh Soleyman thrust and the Chamshir fault zone, which all act in concert to create karst entryways, including local zones of suffusion karst. A wide variety of karstic features typify the region surrounding the dam site and include; karrens, dissolution dolines, karstic springs and cavities. These karst features will compromise the ability of Chamshir Dam to store water, and possibly even cause breaching of the dam, via solution channels and cavities which could allow significant water flow downstream of the dam reservoir. As possible and likely partial short term solutions, Torabi-Kaveh et al. (2012) recommend the construction of a cutoff wall and/or a clay blanket floor to the reservoir

Difficulties in building hydraulic structures on soluble rocks are many, and dealing with them greatly increases project and maintenance costs. Gypsum dissolution at the Hessigheim Dam on the River Neckar in Germany has caused settlement problems in sinkholes nearby. Site investigation showed cavities up to several meters high and remedial grouting from 1986 to 1994 used 10,600 tonnes of cement. The expected life of the dam is only 30-40 years, with continuing grouting required to keep it serviceable.

Grouting costs in zones of evaporite karst can be very high and may approach 15 or 20% of the dam cost, currently reaching US$ 100 million in some cases. In karstified limestones grouting is difficult, yet in gypsum it is even more difficult due to the rapid dissolution rate of the gypsum. Karst expansion in limestone occurs on the scale of hundreds of years, in gypsum it can be on the order of a decade or less. Grouting may also alter the underground flow routes, so translating and focusing the problems to other nearby areas. In the Perm area of Russia, gypsum karst beneath the Karm hydroelectric power station dam has perhaps been successfully grouted, a least in the short term, using an oxaloaluminosilicate gel that hardens the grout, but also coats the gypsum, so slowing its dissolution. The Mont Cenis Dam, in the French Alps, is not itself affected by the dissolution of gypsum. However, the reservoir storage zone is leaking and photogrammetric study of the reservoir slopes showed ongoing doline activity over gypsum and subsidence in the adjacent land.


Probably the worst example tied to and evaporite karst hazard is the significant dam disaster waiting to happen that is the Mosul Dam in Iraq (Figure 13; Kelley et al., 2007; Sissakian and Knutsson, 2014; Milillo et al., 2016). It is ranked as the fourth largest dam in the Middle East, as measured by reserve capacity, capturing snowmelt from Turkey, some 70 miles (110 km) north. Built under the despotic regime of Saddam Hussein, completed in 1984 the Mosul Dam (formerly known as Saddam Dam) is located on the Tigris river, some 50 km NW of Mosul.

The design of the dam was done by a consortium of European consultants (Sissakian and Knutsson, 2014), namely, Swiss Consultants group, comprising: Motor Columbus; Electrowatt; Suiselectra; Societe Generale pour l’Industrie. The construction was carried out by a German-Italian consortium of international contractors, GIMOD joint venture, comprising: Hochtief; Impregilo; Zublin; Tropp; Italstrade; Cogefar. The consultants for project design and construction supervision comprised a joint venture of the above listed Swiss Consultants Group and Energo-Projekt of Yugoslavia, known as MODACON.

As originally constructed the dam is 113 m in height, 3.4 km in length, 10 m wide in its crest and has a storage capacity of 11.1 billion cubic meters (Figure 13b). It is an earth fill dam, constructed on evaporitic bedrock atop a karstified high created by an evaporite cored anticline in the Fat’ha Formation, which consists of gypsum beds alternating with marl and limestone (Figure 13a, 14). To the south, this is same formation with the same evaporite cored anticlinal association that created all the stability problems in the city of Mosul (Figures 10). The inappropriate nature of the Fat’ha Formation as a foundation for any significant engineering structure had been known for more than a half a century. Then again, absolute rulers do not need to heed scientific advice or knowledge. Or perhaps he didn’t get it from a well-paid group of Swiss-based engineering consultants. As Kelley et al. (2007) put it so succinctly....“The site was chosen for reasons other than geologic or engineering merit.”

The likely catastrophic failure of Mosul Dam will drive the following scenario (Sissakian and Knutsson, 2014); “... (dam) failure would produce a flood wave crest about 20 m deep in the City of Mosul. It is estimated that the leading edge of the failure flood wave would arrive in Mosul about 3 hours after failure of the dam, and the crest of the flood wave would arrive in Mosul about 9 hours after failure of the dam. The total population of the City of Mosul is about 3 million, and it is estimated that about 2 million people are in locations within the city that would be inundated by a 20 m deep flood wave. The City of Baghdad is located about 350 km downstream of Mosul Dam, and the dam failure flood wave will arrive after 72 hours in Baghdad and (by then) would be about 4 m deep.”



The heavily karsted Fat’ha Formation is up to 352 m thick at the dam and has an upper and lower member. The lower member is dominated by carbonate in its lower part (locally called “chalky series”) and is in turn underlain by an anhydrite bed known as the GBo. Gypsum beds typify its upper part,and the evaporite interval is capped by a limestone marker bed. The upper member, crops out as green and red claystone with gypsum relicts, around the Butmah Anticline. Thickness of individual gypsum beds below the dam foundations can attain 18 m; these upper member units are intensely karstified, even in foundation rocks, with cavities meters across documented during construction of the dam (Figure 14). Gypsum breccia layers are widespread within the Fatha Formation and have proven to be the most problematic rocks in the dam’s foundation zone. The main breccia body contains fragments or clasts of limestone, dolomite, or larger pieces of insoluble rocks of collapsed material. The upper portion of the accumulation grades upward from rubble to crackle mosaic breccia and then a virtually unaffected competent overburden. Breccia also may form without the intermediate step of an open cavity, by partial dissolution and direct formation of rubble. As groundwater moves through the rubble, soluble minerals are carried away, leaving insoluble residues of chert fragments, quartz grains, silt, and clay in a mineral matrix. These processes result in geologic layers with lateral and vertical heterogeneity on scales of micro-meters to meters.

High permeability zones in actively karsting gypsum regions can form rapidly, days to weeks, and quickly become transtratal. So predicting or controlling breakout zones via grouting and infill can be problematic (Kelley et al., 2007; Sissakian and Knutsson, 2014). For example, four sinkholes formed between 1992 and 1998 approximately 800 m downstream in the maintenance area of the dam (Figure 13a). The sinkholes appeared in a linear arrangement, approximately parallel to the dam axis. Another large sinkhole developed in February 2003, east of the emergency spillway when the pool elevation was at 325 m. The Mosul Dam staff filled the sinkhole the next day, with 1200 m3 of soil. Another sinkhole developed in July 2005 to the east of the saddle dam. Six borings were completed around the sinkhole and indicated that the sinkhole developed beneath overburden deposits and within layers of the Upper Marl Series. Another cause for concern at Mosul Dam in recent years is a potential slide area reported upstream of the dam on the west bank. The slide is most likely related to the movement of beds of the Chalky Series over the underlying GBo (anhydritic) layer.

To “cope” with ongoing active karst growth beneath and around the Mosul Dam, a continuous grouting programme was planned, even during dam construction, and continues today, on a six days per week basis. It pumps tens of thousands of tons of concrete into expanding karst features each year (Sissakian and Knutsson, 2014; Milillo et al., 2016). The dam was completed in June 1984, with a postulated operational life of 80 years. Due to insufficient grouting and sealing in and below the dam foundation, numerous karst features, as noted above, continue to enlarge in size and quantity, so causing serious problems for the ongoing stability of the dam. The increase in hydraulic gradient created by a wall of water behind the dam has accelerated the rate of karstification in the past 40 years.

Since the late 1980s, the status of the dam and its projected collapse sometime within the next few decades has created ongoing nervousness for the people of Mosul city and near surroundings. All reports on the dam since the mid 1980s have underlined the need for ongoing grouting and monitoring and effective planning of the broadcasting of a situation where collapse is imminent. For “Saddam’s dam” the question is not if, but when, the dam will collapse. To alleviate the effects of the dam collapse, Iraqi authorities have started to build another “Badush Dam” south of Mosul Dam so that it can stop or reduce the effects of the first flood wave. However this new dam has a projected cost in excess of US$ ten billion and so lies beyond the financial reach of the current Iraqi government. Problems related to the dam increased with the takeover of the region by the forces of ISIL.

Today, the Mosul dam is subsiding at a linear rate of ~15 mm/year compared to 12.5 mm/year subsidence rate in 2004–2010 (Milillo et al., 2016). Increased subsidence restarted at the end of 2013 after re-grouting operations slowed and at times stopped. The causes of the observed linear subsidence process of the dam wall can be found in the human activities that have promoted the evaporite–subsidence development, primarily in gypsum deposits and may enable, in case of continuous regrouting stop, unsaturated water to flow through or against evaporites deposits, allowing the development of small to large dissolution cavities.

Large vertical movements that typified the dam wall have resulted from the dissolution of extensive gypsum strata previously mapped beneath the Mosul dam. Increased subsidence rate over the past five years has been due to periods when there was little or no regrouting underlying the dam basement. Dam subsidence currently seems to follow a linear behavior but on can not exclude a future acceleration due to increased gypsum dissolution speed and associated catastrophic collapse of the dam (Milillo et al., 2016).

Given the existing geologic knowledge base in the 1980s, in my opinion, one must question the seeming lack of understanding in a group of well-paid consultant engineering firms as to the outcome of building such a major structure, atop what was known to be an active karstifying gypsum succession, sited in a location where failure will threaten multimillion populations in the downstream cities. The same formation that constituted the base to the Mosul dam was known at the time to be associated with ground stability problems atop similar gypsum-cored anticlines in the city of Mosul to the south. Even more concerning to the project rationale should have been the large karst cavities in highly soluble gypsum that were encountered a number of times during feasibility and construction of the dam foundations (Figure 14). Or, perhaps, as Lao Tzu observed many centuries ago, “ ...So the unwanting soul sees what’s hidden, and the ever-wanting soul sees only what it wants.”

Canals, like dams, that leak in gypsum karst areas can trigger subsidence, which can be severe enough to cause retainment failure. In Spain, the Imperial Canal in the Ebro valley, and several canals in the Cinca and Noguera Ribagorzana valleys, which irrigate parts of the Ebro basin, have on numerous occasions failed in this way. Similarly, canals in Syria have suffered from gypsum dissolution and collapse of soils into karstic cavities. Canals excavated in such ground may also alter the local groundwater flow (equivalent to losing streams) and so accelerate internal erosion, or the dissolution processes and associated collapse of cover materials. In the Lesina Lagoon, Italy, a canal was excavated to improve the water exchange between the sea and the lagoon. It was cut through loose sandy deposits and highly cavernous gypsum bedrock, but this created a new base level, so distorting the local groundwater flow. The canal has caused the rapid downward migration of the cover material into pre-existing groundwater conduits, producing a large number of sinkholes that now threaten an adjacent residential area.

Pipelines constructed across karst areas are potential pollution sources and some may pose possible explosion hazards. The utilization of geomorphological maps depicting the karst and subsidence features allied with GIS and karst databases help with the grouting and management of these structures. In some circumstances below-ground leakage {Zechner, 2011 #26} from water supply pipelines can trigger severe karstic collapse events. Where such hazards are identified, such as where a major oil and gas pipeline crosses the Sivas gypsum karst in Turkey, the maximum size of an anticipated collapse can be determined and the pipeline strength increased to cope with the possible problems.


Solving the problem?

Throughout the world, be it in the US, Canada, the UK, Spain, eastern Europe, or the Middle East, it is a fact that weathering of shallow gypsum forms rapidly expanding and stoping caverns, especially in areas of high water crossflow, unsupported roof beams, and unconsolidated overburden and in areas of artificially confined fresh water. Rapid karst formative processes and mechanism will always be commonplace and widespread (Table 2). Resultant karst-associated problems can be both natural and anthropogenically induced or enhanced. It is fact that natural solution in regions of subcropping evaporites is always rapid, and even more so in areas where it is encouraged by human activities, especially increased cycling of water via damming, groundwater pumping, burst pipes, septic systems, agricultural enhancement and uncontrolled storm and waste water runoffs to aquifers.

Typically, the best way to deal with a region of an evaporite karst hazard is to map the regional extent of the shallow evaporite solution front and avoid it (Table 3). In established areas with a karst problem the engineering solutions will need to be designed around hazards that will typically be characterised by short-term onsets, often tied to rapid ground stoping/subsidence events and quickly followed by ground collapse. If man-made buildings of historical significance are to be restored and stabilized in such settings, perhaps it is better to wait until funds are sufficient to complete the job rather than attempt partial stabilization of the worst-affected portions of the feature. Significant infrastructure (including roads, canals and dams) should be designed to avoid such areas when possible or engineered to cope with and/or survive episodes of ground collapse.

A piecemeal approach to dealing with evaporite karst can intensify and focus water crossflows rather than alleviate them. In the words of Nobel prizewinner, Shimon Peres; “If a problem has no solution, it may not be a problem, but a fact - not to be solved, but to be coped with over time.”


References

Alberto, W., M. Giardino, G. Martinotti, and D. Tiranti, 2008, Geomorphological hazards related to deep dissolution phenomena in the Western Italian Alps: Distribution, assessment and interaction with human activities: Engineering Geology, v. 99, p. 147-159.

Amin, A., and K. Bankher, 1997b, Causes of land subsidence in the Kingdom of Saudi Arabia: Natural Hazards, v. 16, p. 57-63.

Amin, A. A., and K. A. Bankher, 1997a, Karst hazard assessment of eastern Saudi Arabia: Natural Hazards, v. 15, p. 21-30.

Biddle, P. G., 1983, Patterns of drying and moisture deficit in the vicinity of trees on clay soils: Geotechnique, v. 33, p. 107-126.

Castañeda, C., F. Gutiérrez, M. Manunta, and J. P. Galve, 2009, DInSAR measurements of ground deformation by sinkholes, mining subsidence, and landslides, Ebro River, Spain: Earth Surface Processes and Landforms, v. 34, p. 1562-1574.

Cooper, A. H., 1986, Subsidence and foundering of strata caused by the dissolution of Permian gypsum in the Ripon and Bedale areas, North Yorkshire: Harwood, Gill M., Smith, Denys B. The English Zechstein and related topics. Univ. Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom. Geological Society Special Publications, v. 22, p. 127-139.

Cooper, A. H., 1995, Subsidence hazards due to the dissolution of Permian gypsum in England: Investigation and remediation, in B. F. Beck, ed., Karst Geohazards - Engineering and Environmental Problems in Karst Terrane. Proceedings of the fifth multidisciplinary conference on sinkholes and the environmental impacts of karst, Gatlinburg, Tennessee: Rotterdam, A.A. Balkema, p. 23-29.

Cooper, A. H., 1998, Subsidence hazards caused by the dissolution of Permian gypsum in England: geology, investigation and remediation, in J. G. Maund, and M. Eddleston, eds., Geohazards in Engineering Geology, v. 15: London, Geological Society, London, p. 265-275.

Cooper, A. H., and F. Gutiérrez, 2013, Dealing with gypsum karst problems: hazards, environmental issues, and planning, in J. F. Shroder, ed., Treatise on geomorphology, Elsevier, p. 451-462.

Cooper, A. H., and J. M. Saunders, 2002, Road and bridge construction across gypsum karst in England: Engineering Geology, v. 65, p. 217-233.

Cooper, A. H., and A. C. Waltham, 1999, Subsidence caused by gypsum dissolution at Ripon, North Yorkshire: Quarterly Journal of Engineering Geology, v. 32, p. 305-310.

Dahm, T., S. Heimann, and W. Bialowons, 2011, A seismological study of shallow weak micro-earthquakes in the urban area of Hamburg city, Germany, and its possible relation to salt dissolution: Natural Hazards, v. 58, p. 1111-1134.

Davis, A., and P. Rahn, 1997, Karstic gypsum problems at wastewater stabilization sites in the Black Hills of South Dakota: Carbonates and Evaporites, v. 12, p. 73-80.

Driscoll, R., 1983, The influence of vegetation on the swelling and shrinking of clay soils in Britain: Geotechnique, v. 33, p. 93-105.

Elorza, M. G., and F. G. Santolalla, 1998, Geomorphology of the Tertiary gypsum formations in the Ebro Depression (Spain): Geoderma, v. 87, p. 1-29.

Ford, D. C., 1997, Principal features of evaporite karst in Canada: Carbonates and Evaporites, v. 12, p. 15-23.

Frumkin, A., M. Ezersky, A. Al-Zoubi, E. Akkawi, and A.-R. Abueladas, 2011, The Dead Sea sinkhole hazard: Geophysical assessment of salt dissolution and collapse: Geomorphology, v. 134, p. 102-117.

Galve, J. P., F. Gutierrez, P. Lucha, J. Bonachea, J. Remondo, A. Cendrero, M. Gutierrez, M. J. Gimeno, G. Pardo, and J. A. Sanchez, 2009, Sinkholes in the salt-bearing evaporite karst of the Ebro River valley upstream of Zaragoza city (NE Spain) Geomorphological mapping and analysis as a basis for risk management: Geomorphology, v. 108, p. 145-158.

Garleff, K., H. Kugler, A. V. Poschinger, H. Sterr, H. Strunk, and G. Villwock, 1997, Germany, in C. Embleton, and C. Embleton, eds., Geomorphological hazards of Europe, Vol. 5. Developments in Earth Surface Processes, v. 5, p. 147-177.

Guerrero, J., F. Gutiérrez, and J. P. Galve, 2013, Large depressions, thickened terraces, and gravitational deformation in the Ebro River valley (Zaragoza area, NE Spain): Evidence of glauberite and halite interstratal karstification: Geomorphology, v. 196, p. 162-176.

Gutierrez, F., 2010, Hazards associated to karst (Chapter 13), in I. Alcántara-Ayala, and A. S. Goudie, eds., Geomorphological Hazards and Disaster Prevention, Cambridge University Press, p. 161-176.

Gutiérrez, F., 1996, Gypsum karstification induced subsidence - effects on alluvial systems and derived geohazards (Calatayud Graben, Iberian Range, Spain): Geomorphology, v. 16, p. 277-293.

Gutiérrez, F., 2014, Evaporite Karst in Calatayud, Iberian Chain, in F. Gutiérrez, and M. Gutiérrez, eds., Landscapes and Landforms of Spain: World Geomorphological Landscapes, Springer Netherlands, p. 111-125.

Gutiérrez, F., A. Cooper, and K. Johnson, 2008, Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas: Environmental Geology, v. 53, p. 1007-1022.

Gutiérrez, F., and A. H. Cooper, 2002, Evaporite dissolution subsidence in the historical city of Calatayud, Spain: Damage appraisal and prevention: Natural Hazards, v. 25, p. 259-288.

Gutiérrez, F., M. Parise, J. De Waele, and H. Jourde, 2014, A review on natural and human-induced geohazards and impacts in karst: Earth-Science Reviews, v. 138, p. 61-88.

Jassim, S. Z., A. S. Jibril, and N. M. S. Numan, 1997, Gypsum karstification in the Middle Miocene Fatha Formation, Mosul area, Northern Iraq: Geomorphology, v. 18, p. 137-149.

Johnson, K., 2008, Gypsum-karst problems in constructing dams in the USA: Environmental Geology, v. 53, p. 945-950.

Jones, C. J. F. P., and A. H. Cooper, 2005, Road construction over voids caused by active gypsum dissolution, with an example from Ripon, North Yorkshire, England: Environmental Geology, v. 48, p. 384-394.

Karacan, E., and I. Yilmaz, 1997, Collapse dolines in Miocene gypsum - An example from SW Sivas (Turkey): Environmental Geology, v. 29, p. 263-266.

Kelley, J. R., L. D. Wakeley, S. W. Broadfoot, M. L. Pearson, C. J. McGrath, T. E. McGill, J. D. Jorgeson, and C. A. Talbot, 2007, Geologic Setting of Mosul Dam and Its Engineering Implications: US Army Corps of Engineers; Engineer Research and Development Center Report ERDC TR-07-10.

Martinez, J. D., and R. Boehner, 1997, Sinkholes in glacial drift underlain by gypsum in Nova Scotia, Canada: Carbonates and Evaporites, v. 12, p. 84-90.

Milillo, P., R. Bürgmann, P. Lundgren, J. Salzer, D. Perissin, E. Fielding, F. Biondi, and G. Milillo, 2016, Space geodetic monitoring of engineered structures: The ongoing destabilization of the Mosul dam, Iraq: Nature Open Reports, v. 6, p. 37408.

Paukstys, B., A. H. Cooper, and J. Arustiene, 1999, Planning for gypsum geohazards in Lithuania and England: Engineering Geology, v. 52, p. 93-103.

Sargent, C., and N. R. Goulty, 2009, Seismic reflection survey for investigation of gypsum dissolution and subsidence at Hell Kettles, Darlington, UK: Quarterly Journal of Engineering Geology and Hydrogeology, v. 42, p. 31-38.

Shviro, M., I. Haviv, and G. Baer, 2017, High-resolution InSAR constraints on flood-related subsidence and evaporite dissolution along the Dead Sea shores: Interplay between hydrology and rheology: Geomorphology, v. 293, p. 53-68.

Sissakian, V., N. Al-Ansari, and S. Knutsson, 2014, Karstification Effect on the Stability of Mosul Dam and Its Assessment, North Iraq: Engineering and Mining Journal, v. 6, p. 84-92.

Sissakian, V. K., V. K. Al-Ansari, and S. Knutsson, 2015, Karst Forms in Iraq Journal of Earth Sciences and Geotechnical Engineering, v. 5, p. 1-26.

Soriano, M. A., and J. Simon, 1995, Alluvial dolines in the central Ebro basin, Spain: a spatial and developmental hazard analysis: Geomorphology, v. 11, p. 295-309.

Sprynskyy, M., M. Lebedynets, and A. Sadurski, 2009, Gypsum karst intensification as a consequence of sulphur mining activity (Jaziv field, Western Ukraine): Environmental Geology, v. 57, p. 173-181.

Stafford, K. W., W. A. Brown, T. Ehrhart. Jon, A. F. Majzoub, and J. D. Woodard, 2017, Evaporite karst geohazards in the Delaware Basin, Texas: review of traditional karst studies coupled with geophysical and remote sensing characterization: International Journal of Speleology, v. 46, p. 169-180.

Thierry, P., A. Prunier-Leparmentier, C. Lembezat, E. Vanoudheusden, and J. Vernoux, 2009, 3D geological modelling at urban scale and mapping of ground movement susceptibility from gypsum dissolution: The Paris example (France): Engineering Geology, v. 105, p. 51-64.

Tolmachev, V., A. Ilyin, B. Gantov, M. Leonenko, V. Khomenko, and I. A. Savarensky, 2003, The main results of engineering karstology research conducted in Dzerzhinsk, Russia (1952-2002), in B. Beck, ed., Sinkholes and the engineering and environmental impacts of karst: proceedings of the ninth multidisciplinary conference, September 6-10, 2003, Huntsville, Alabama, American Society of Civil Engineers, p. 502-516.

Tolmachev, V., and M. Leonenko, 2011, Experience in Collapse Risk Assessment of Building on Covered Karst Landscapes in Russia, in P. E. van Beynen, ed., Karst Management, Springer Netherlands, p. 75-102.

Torabi-Kaveh, M., M. Heidari, and M. Miri, 2012, Karstic features in gypsum of Gachsaran Formation (case study; Chamshir Dam reservoir, Iran): Carbonates and Evaporites, v. 27, p. 291-297.

Toulemont, M., 1984, Le karst gypseux du Lutetien superieur de la region parisienne; caracteristiques et impact sur le milieu urbain: Revue de Geologie Dynamique et de Geographie Physique, v. 25, p. 213-228.

Trzhtsinsky, Y., 2002, Human-induced activation of gypsum karst in the southern Priangaria (East Siberia, Russia): Carbonates and Evaporites, v. 17, p. 154-158.

Waltham, T., F. Bell, and M. Culshaw, 2005, Sinkholes and Subsidence: Karst and Cavernous Rocks in Engineering and Construction: Berlin Heidelberg, Springer Praxis Books, 382 p.

Wang, G., G. You, and Y. Xu, 2008, Investigation on the Nanjing Gypsum Mine Flooding, in H. Liu, A. Deng, and J. Chu, eds., Geotechnical Engineering for Disaster Mitigation and Rehabilitation: Proceedings of the 2nd International Conference GEDMAR08, Nanjing, China 30 May – 2 June, 2008: Berlin, Heidelberg, Springer Berlin Heidelberg, p. 920-930.

Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

Warren, J. K., 2017, Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term: Earth-Science Reviews, v. 165, p. 302-341.

Yaoru, L., and A. H. Cooper, 1997, Gypsum karst geohazards in China, in B. F. Beck, and J. B. Stephenson, eds., Engineering Geology and hydrogeology of Karst Terrains: Proceedings of the Sixth Multidisciplinary Conference on Sinkholes and the Engineering and Environmental Impacts of Karst Springfield, Missouri, 6-9 April 1997, Balkema, Rotterdam, p. 117-126.

Yilmaz, I., M. Marschalko, and M. Bednarik, 2011, Gypsum collapse hazards and importance of hazard mapping: Carbonates and Evaporites, v. 26, p. 193-209.

Zechner, E., M. Konz, A. Younes, and P. Huggenberger, 2011, Effects of tectonic structures, salt solution mining, and density-driven groundwater hydraulics on evaporite dissolution (Switzerland): Hydrogeology Journal, v. 19, p. 1323-1334.

 

Comments
Post has no comments.
Post a Comment




Captcha Image

Trackback Link
http://www.saltworkconsultants.com/BlogRetrieve.aspx?BlogID=13454&PostID=723890&A=Trackback
Trackbacks
Post has no trackbacks.

Recent Posts


Tags

silicified anhydrite nodules Musley potash capillary zone mirabilite carnallitite Magdalen's Road Pilbara Dead Sea caves eolian transport gem gypsum dune waste storage in salt cavity Neoproterozoic salt periphery Evaporite-source rock association Platform evaporite bedded potash sedimentary copper hydrothermal potash supercontinent halite hydrohalite lazurite tachyhydrite authigenic silica blowout evaporite dissolution snake-skin chert Badenian Ethiopia mass die-back salt karst marine brine intersalt evaporite karst Five Island salt dome trend lapis lazuli sepiolite High Magadi beds epsomite Lake Peigneur Archean Atlantis II Deep ancient climate NaSO4 salts anomalous salt zones oil gusher potash ore Sulphate of potash stevensite Messinian Realmonte potash rockburst namakier vadose zone sodium silicate Hyperarid salt seal evaporite-hydrocarbon association potash Ingebright Lake halotolerant lithium brine mine stability methane Clayton Valley playa: Salar de Atacama seal capacity nuclear waste storage lot's wife perchlorate base metal Crescent potash evaporite-metal association dihedral angle antarcticite freefight lake Lake Magadi nitrogen mummifiction gas in salt trona Great Salt Lake halokinetic palygorskite Pangaea Hell Kettle alkaline lake salt suture sinjarite Paleoproterozoic Oxygenation Event nacholite Warrawoona Group gas outburst Koeppen Climate sinkhole Karabogazgol magadiite astrakanite Jefferson Island salt mine hydrological indicator hectorite hydrogen saline clay kainitite zeolite brine evolution geohazard venice evaporite lunette circum-Atlantic Salt Basins halite-hosted cave Proterozoic Sumo dissolution collapse doline Neoproterozoic Oxygenation Event intrasalt jadarite salt tectonics Ure Terrace Red Sea Turkmenistan dark salt salt ablation breccia Koppen climate Precambrian evaporites Quaternary climate MOP subsidence basin meta-evaporite salt mine Zabuye Lake Dallol saltpan vanished evaporite North Pole CaCl2 brine SOP natural geohazard H2S Ripon Weeks Island salt mine Catalayud chert Muriate of potash water in modern-day Mars potash ore price well blowout water on Mars black salt SedEx cryogenic salt Deep African rift valley lakes cauliflower chert Danakhil Depression, Afar Stebnik Potash bischofite silica solubility doline Mesoproterozoic recurring slope lines (RSL) CO2 crocodile skin chert flowing salt Kalush Potash climate control on salt organic matter extrasalt gassy salt DHAL Belle Isle salt mine basinwide evaporite source rock hydrothermal karst Dead Sea karst collapse deep meteoric potash allo-suture salt leakage, dihedral angle, halite, halokinesis, salt flow, collapse doline Zaragoza Lomagundi Event lithium battery solikamsk 2 Stebnyk potash salt trade lithium carbonate Mega-monsoon MVT deposit Kara bogaz gol Hadley cell: auto-suture knistersalz Deep seafloor hypersaline anoxic lake

Archive