Salty Matters

The Blog is written by me, John Warren. Once every three or four weeks or so I will post an article or two on an evaporite topic that has piqued my interest. On the Saltwork Publications webpage (under "the Works") there is a growing library of pdfs and epubs based on these blogs. These articles on the website have much higher resolution extractable graphics in than in the blog. There is also a link to this set of pdfs and epubs on the home page (www.saltworkconsultants.com).

Evaporites and climate: Part 1 of 2 - Are modern deserts the key?

John Warren - Tuesday, January 31, 2017

Salt deposits and deserts

Much of the geological literature presumes that thick sequences of bedded Phanerozoic evaporites accumulated in hot arid zones tied to the distribution of the world’s deserts beneath regions of descending air within Hadley Cells in a latitudinal belt that is typically located 15 to 45 degrees north or south of the equator (Figure 1a: Gordon, 1975). As this sinking cool air mass approaches the landsurface beneath the descending arm of a Hadley Cell it warms, and so its moisture-carrying capacity increases. The next two articles will discuss the validity of this assumption of evaporites tying to hot arid desert belts in the trade wind belts, first, by a consideration of actual Quaternary evaporite distributions as plotted in a GIS database with modern climate overlays, then in the second article via a look at ancient salt/climate distributions.

Significant volumes of Quaternary evaporite salts are normally interpreted as being allied to the distribution of the world’s hot arid deserts (Figure 1b). In a general way this is true, but, as Warren (2010) shows, the correlation is an oversimplification. A hot arid desert does not necessarily equate to occurrences of laterally extensive bedded evaporites; there must also be a significant long-term brine inflow to the evaporative sump, incoming waters may be meteoric, marine, a hybrid and perhaps the sump is fed brines coming from dissolution of earlier formed salts in the drainage basin, including diapiric salt (Table 1; Warren, 2016).


Actually, there are different ways of defining a desert and by implication its associated evaporites. One accepted approach is to define desert as a terrestrial area receiving less that 250 mm (10 inches) of annual precipitation. Using this definition some 26.2% of the world’s landsurface is desert (Figure 1b). But, in terms of evaporite distribution and the economics of the associated salts, this climatic generalization related to annual rainfall conceals three significant hydrological truisms. All three need to be met in order to accumulate thick sequences of bedded salts (Warren, 2010): 1) For any substantial volume of evaporite to precipitate and be preserved, there must be a sufficient volume of cations and anions in the inflow waters to allow thick sequences of salts to form; 2) The depositional setting and its climate must be located within a longer term basin hydrology that favours preservation of the bedded salt, so the accumulating salt mass can pass into the burial realm; 3) There must be a negative water balance in the basin with the potential for more water to leave the local hydrological sump than enter. When using a rainfall (precipitation) based definition of desert, the significance of these three simple hydrological axioms and the consequences, as to where bedded evaporites accumulate, is lost in the generalization that “evaporites form in the world’s deserts.”


Continental-interior evaporites

In an evaporite context it is better to define and plot saline hydrologies within a climatic framework where deserts are given the same hydrological consideration that is required for evaporite salts to form. That is, a desert is an area of land where annual precipitation (inflow) is less than potential evapotranspiration (outflow). This definition of a desert is the one used by Köppen (1900). With slight modification, his climatological scheme is still in widespread use to breakout the various climatic zones across the world’s landsurface (Kottek et al., 2006). Using a Köppen climate base, figure 2 plots worldwide occurrences of modern saline depositional systems with areas greater than 250 km2. Table 1 compares characteristics of some of the larger Quaternary bedded evaporite settings in marine edge and continental interiors. These regions contain evaporite salts accumulating in saline soils, sabkhas, salinas, saline lakes, playas and salt flats, with textural forms ranging from; isolated crystals and nodules in a terrigenous matrix, to salt crusts, to stacked beds of salts that can be more than 10 metres thick. The majority of the plotted saline areas are in arid regions, as defined by Köppen (Zone B), but not all such areas of widespread salts are in deserts (as defined by Köppen) and not all are in hot climates.


The range of large (>250 km2) saline systems in the world’s arid landscape is more climatically diverse than just evaporite occurrences within a hot arid desert (BWh), although such associations do constitute some 38% of saline occurrences (Figure 3a; Warren, 2010; 2016). Cold arid deserts (BWk) host 23% of large saline occurrences, making a combined total of 61% for large evaporite accumulation (area >250 km2) occurrences in modern arid deserts (BW group), while the arid steppes (BSh and BSk) host another 22%. In total the world’s arid climatic zones host 83% of today’s larger evaporite occurrences (Figure 3b).


This leaves another substantial, but not widely recognized, climate zone where significant volumes of Quaternary evaporites can accumulate, this is the polar tundra (ET); an environment where some 11% of large evaporite areas occur. In terms of evaporite volumes, the polar tundra (ET) is typically an arid high altitude belt, mostly in the Horse Latitude (Trade Wind) belts, and not located in polar or near-polar higher latitudes. The lakes and saline pans of the high plateaus of the Andes (Altiplano) and the Himalayas (Tibetan Plateau) typify this style of tundra (ET) evaporite. Water may be commonplace in the ET zone, but is there mostly as ice, and cryogenic salts are commonplace (see Salty Matters, Feb 24, 2015). The remaining region where significant evaporite volumes are found, some 6% of the total of large saline occurrences is a group of deposits defined by continental interior snow climates (group D), some with hot dry summers with solar evaporites alternating with dry winters favouring the possible accumulation of cryogenic salts (e.g. Great Salt Lake, USA).


In the Northern Hemisphere the occurrence of large evaporite systems within arid deserts and steppe climates (BW and BS settings) extends much further south toward the equator and much further poleward (from 5-55°N) than the narrower range of large evaporite occurrences and associated climates in the southern hemisphere (Figure 4). This hemispheric asymmetry in evaporite occurrence is mostly a response to world-scale adiabatic effects associated with the collision of India with Eurasia and growth of the Himalayas. Today, a Cainozoic mountain range, centred on the Himalyas, diverts world-scale atmospheric air flows from the more north-south trajectory, usually associated with Hadley Cell circulation. For example, the Kunlun Mountains, first formed some 5.3 Ma, prevents moisture from the Indian Monsoon reaching much of the adjacent Tibet Plateau. Its adiabatic rain shadow creates the Taklamakan desert, the second largest active sand desert in the world (BWk).

The uplift of the Himalayas also creates a dry easterly jet stream, moving arid cool air across the Tibet Plateau, around the northern side of the Himalayas, and then equatorward across the Arabian Peninsula toward Somalia where it descends and gains heat. That is, this stream of cool southwesterly-flowing dry air warms as it moves across the Eastern Mediterranean land areas and so heightens existing aridity. This helps create an adiabatic desert zone that today ranges across Arabia and northern Africa almost to the Equator (Figures 5).


In the southern hemisphere, the uplift of the Andes has formed high intermontane depressions and the allied adiabatic aridity that are cooler with lower evaporation rates and higher relied in the immediate basin compared to groundwater depressions in flatter lower-elevation continental interior deserts like the Sahara. This higher stability hydrology favours salars over dry mudflats, as typified by Salar de Atacama and Salar de Uyuni. Atacama has a Quaternary saline sediment fill made up of a more than 900 m thickness of interlayered salt and clay, while Uyuni holds a more than 120 m thick interval of interbedded salt and clay infill, with areas of 3,064 km2 and 9,654 km2 and elevations of 2250 m and 3650 m, respectively (Figure 7a). These salars are the two largest known examples of Quaternary bedded halite accumulation, worldwide. Yet neither resides in hot arid desert settings (BWh); both are located in cold arid deserts (BWk) and in actively subsiding, high altitude (>2500m) intermontane (high relief) endorheic depressions.


Worldwide, distribution of most of the larger (>250 km2) Quaternary evaporite settings located in hot arid (BWh) desert settings, tie either to; 1) endorheic river terminations along desert margins, especially if adjacent to mountain belts (e.g. the various circum Saharan chotts, playas and sabkhas adjacent to Atlas Mountains), or 2) to ancient inherited paleodrainage depressions (as in the majority of the interior salt lakes of Australia or the southern Africa pans). Another hot arid desert (BWh) evaporite association is defined by termination outflow rims of deep artesian systems, as in Lake Eyre North, Australia (8,528 km2, with an ephemeral halite crust up to 2 m thick in its southern portion). Similar, deeply-circulating, meteoric artesian hydrologies help explain the distribution of chotts in the BWh zone of NE Africa. Unlike Atacama and Uyuni in the Andes, none of these modern BWh artesian systems preserve stacked decametre-thick salt beds, nor did they do so at any time in the Quaternary. Rather, the most extensive style of BWh salt in meteoric-fed artesian outflow zones is as dispersed crystals of gypsum and halite in a terrigenous redbed matrix (sabkha) or as visually impressive large ephemeral saline flats and pans covered by metre-scale salt crusts that dissolve and reform with the occasional decadal freshwater flood (Warren 2016; Chapter 3). Sediments of such continental groundwater outflow zones are typically reworked by eolian processes and, due to a lack of long term watertable stability, the longterm sediment fill is matrix-rich and evaporite-poor, with the Quaternary sediment column typified by episodes of deflation, driven by 10,000-100,000 year cycles of glacial-interglacial climate changes.

It seems that to form and preserve laterally-extensive decametre-thick stacked beds of halite in a Quaternary time-framework requires an actively subsiding tectonic depression in a cooler high-altitude continental desert, where temperatures and evaporation rates are somewhat lower than in BWh settings, allowing brine to pond and remain at or near the surface for longer periods (Figures 6, 7a). But perhaps more importantly, all of the larger regions of the Quaternary world, where thick stacked bedded (not dispersed) evaporites are accumulating, are located in continental regions with drainage hinterlands where dissolution of older halokinetic marine-fed salt masses are actively supplying substantial volumes of brine to the near surface hydrology. This halokinetic-supplied set of deposits includes, Salar de Uyuni and Salar de Atacama in the Andean Altiplano, the Kavir salt lakes of Iran, the Qaidam depression of China and the Dead Sea (Table 1).


Marine-edge evaporites

Thick sequences of stacked Quaternary evaporite beds with a marine-brine feed are far less common and far smaller than meteoric/halokinetic Quaternary continental evaporite occurrences. Relatively few marine-fed evaporite regions exist today with areas in excess of 250 km2 (Table 1; Figures 6, 7b). By definition, in order to be able to draw on significant volumes of seawater, these basins must operate with a subsealevel hydrology. This allows large volumes of seawater to seep into the depression and evaporate. It also means most of these deposits are located near the continental edge where a freestanding mass of seawater is not too distant

The largest known deposit of this group is Lake Macleod on the west coast of Australia, with an area of 2,067 km2 and containing a 10m-thick Holocene gypsum/halite bed (Figure 7b). It hosts a saltworks producing some 1,500,000 tonnes/year of halite from lake brines in a BWh setting (Warren, 2016). A smaller marine seepage example, with a similar Quaternary coastal carbonate dune-hosted seepage hydrology, is Lake MacDonnell near the head of the Great Australia Bight. It has an area of 451 km2, a 10m-thick fill of Holocene bedded gypsum and is located in a milder BSk setting, compared to Lake Macleod. Even so, annually, the Lake MacDonnell operation is quarrying more than 1.4 million tonnes of Holocene coarsely-crystalline near-pure gypsum and producing more that 35,000 tonnes of salt via by pan evaporation of lake brines.

Interestingly, when the climatic settings of Holocene coastal salinas of southern and western Australia are compared, all show similar interdunal sump seepage hydrologies with unconfined calcarenite aquifers, yet it is clear that gypsum evaporite beds dominate in BSk and lower precipitation levels, with more carbonate, in Csb coastal settings typified by hot dry summers. Halite dominates the marine-fed bedded fills in BWh coastal settings, while Coorong-style meteoric-fed carbonates dominate in similar interdunal coastal seepage depressions in the more the humid and somewhat cooler Csb settings of the Coorong region.


One of the most visually impressive marine seep systems in the world is Lake Asal, immediately inland of the coast of Djibouti, with an area of only 54 km2 it is much smaller than the 250 km2 cutoff used for this discussion. It is located in a BWh climate, similar to that of the Danakil depression, contains subaqueous textured gypsum and pan halites, and lies at the bottom of a hydrographically-isolated basalt-floored depression with a brine lake surface some 115m below sealevel (Figure 8; see Warren, 2016 Chapter 4 for geological detail). This difference in elevation between the nearby Red Sea and the lake floor drives a marine seep hydrology, so that seawater-derived groundwater escapes as springs along the basaltic lake margin. Most of the cations and anions in the seawater feed, that ultimately accumulate as salts in the subsealevel Asal sump, move lakeward via gravitational seepage along fractures in a basaltic ridge aquifer separating the Red Sea from the brine lake, in what is an actively extending continental rift that will shortly become and arm of the Red Sea.

That there are very few large marine-fed bedded Quaternary evaporite systems is illustrated by summing the total area of large active continental-fed evaporite areas (>250km2) listed in Figure 2, which gives a total surface area worldwide in excess of 360,000 km2. In contrast, the total area of large modern marine-fed bedded salt systems, at slightly less 10,000 km2, is more than an order of magnitude smaller. This low value for large coastal marine-fed evaporite occurrences is in part because many classic coastal sabkhas, with characteristic dispersed evaporites in their supratidal sediments and long considered to be archetypal marine-fed groundwater evaporite system, are now seen as mostly continental brine-fed hydrologies.

For example, the modern Abu Dhabi sabkha system (1,658 km2; BWh) has been shown by Wood (2010) to be a continental groundwater outflow area, where most of ions precipitating as salts in the supratidal zone are supplied by upwelling of deeply-circulated meteoric waters, not seawater flooding (Warren, 2016; Chapter 3). Similar continental hydrologies, resurging into the coastal zone. supply much of the salt accumulating in the suprasealevel sabkhas near Khobar in Saudi Arabia (BWh), Rann of Kutch in India (28,000 km2, BWh), Sabkha Matti (2,955km2, BWh) in the Emirates, and Sabkha de Ndrhamcha (634 km2, BWh) in Mauritania. And yet today all of these large sabkha occurrences are located just inland of modern coastal zones and so, without hydrological knowledge, are easily interpreted as marine. The distinction between a water budget and a salt supply budget emphasizes a general observation in Holocene evaporite systems that, in order to define the main fluid carrier for the salt volume found in any supratidal part of an evaporitic depression, it is important to understand and quantify the nature of the groundwater feed, be it by marine or nonmarine, in both continental-interior and marine-margin settings. It also means that surface runoff and seawater washovers, while at times visually impressive, typically do not supply the greater volume of preserved salts in most modern coastal sabkha systems.

Due to the highly impervious nature of muddy sabkha sediment, an occasional seawater storm flood into a coastal margin mudflat does not mean the pooled seawater ever penetrates the underlying sabkha. Most of its solute load is deposited as an ephemeral surface crust of halite that is a few centimetres thick atop the sabkha muds (Wood et al., 2005). Based on Wood’s and other hydrological studies of modern coastal sabkhas in BWh settings, centred on the Middle East, it seems that the salt supply to most modern coastal sabkha depressions is still not at hydrological equilibrium with the present sealevel, which was reached at the beginning of the Holocene some 6,000-8,000 years ago. That is, modern zones of continental groundwater outflow along an arid coast can have watertables that are up to a metre of two above sealevel and are strongly influenced by the resurgence of seaward-flowing deeply circulating, continental groundwaters (it is axiomatic that surface runoff and local meteoric recharge tend to be limited in BWh settings). In this situation resurging waters in the sabkha tend to have a dominantly continental ionic supply for their preserved salts.

Lastly, in terms of the climatic and hydrological pre-requisites for the accumulations of thick bedded Holocene salt deposits, one must recognize that marine-margin sabkha mudflats do not have the same geohydrology as a near-coastal, hydrographically-isolated seepage-fed sub-sealevel salina depression. A BWh or BSk near-coastal salina is slowly but continually resupplied ions via springs fed by the effusion of seawater, moving under a gravity drive (evaporative drawdown), through an aquifer that is the barrier separating the salina depression from the adjacent ocean. Until the depositional surface reaches hydrological equilibrium, it draws continually on the near limitless supply of ions in the adjacent salty reservoir that is the world’s ocean. Salts growing displacively in the supratidal parts of a sabkha cannot call on a drawdown hydrology and can only be supplied marine salts from salt spray as it is blown inland or from waters washed over the sabkha by the occasional storm driven wash-over and breakout (Figure 9; Warren and Kendall, 1985).


So what?

So, if we based our ideas of where ancient bedded evaporites formed on a strictly uniformitarian approach using Quaternary analogues, then the study of where bedded salts have formed best in the world over the last two million years leads to a conclusion that large bedded salt deposits are not marine fed. Rather, in the Quaternary, thick bedded salts form best in tectonically active, subsiding hypersaline groundwater sumps located in high-altitude high-relief cold-arid deserts. These depressions are hydrographically closed, with the purer, most voluminous, examples of 100m-thick evaporite successions located in tectonically active piggy-back depressions, with lake floors and hydrologies that are more than 2000 m above sea level. Their hydrologies are endorheic and strongly influenced by deeply circulating meteoric waters. In addition, the better examples of thick stacked bedded salts are supplied ions via the dissolution of older marine halokinetic salts in the surrounding drainage basin (Table 1).

Yet, anyone working in ancient (pre-Quaternary) evaporites knows from simple arguments of salt volumetrics versus brine sources, and the nature of the enclosing sediments, that they are part of a dominantly marine basin fill. This will be the focus

References

Gordon, W. A., 1975, Distribution by latitude of Phanerozoic evaporite deposits: Journal of Geology, v. 83, p. 671-684.

Köppen, W., 1900, Versuch einer Klassification der Klimate, vorzsugsweise nach ihren Beziehungen zur Pflanzenwelt: Geographraphische Zeitschrift, v. 6, p. 593-611.

Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006, World Map of the Köppen-Geiger climate classification updated: Meteorologische Zeitschrift, v. 15, p. 259-263.

Stieljes, L., 1973, Evolution tectonique récente du rift d'Asal: Review Geographie Physical Geologie Dynamique, v. 15, p. 425-436.

Warren, J. K., 2010, Evaporitic source rocks: mesohaline responses to cycles of “famine or feast” in layered brines, Quaternary carbonate and evaporite sedimentary facies and their ancient analogues, John Wiley & Sons Ltd., p. 315-392.

Warren, J. K., 2016, Evaporites: A compendium (ISBN 978-3-319-13511-3): Berlin, Springer, 1854 p.

Warren, J. K., and C. G. S. C. Kendall, 1985, Comparison of sequences formed in marine sabkha (subaerial) and salina (subaqueous) settings; modern and ancient: Bulletin American Association of Petroleum Geologists, v. 69, p. 1013-1023.

Wood, W. W., 2010, An historical odyssey: the origin of solutes in the coastal sabkha of Abu Dhabi, United Arab Emirates, Quaternary carbonate and evaporite sedimentary facies and their ancient analogues, John Wiley & Sons Ltd., p. 243-254.

Wood, W. W., W. E. Sanford, and S. K. Frape, 2005, Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat: Chemical Geology, v. 215, p. 361-372.



[1] The word desert comes from the Latin dēsertum (originally "an abandoned place"), a participle of dēserere, "to abandon."

 

Trackback Link
http://www.saltworkconsultants.com/BlogRetrieve.aspx?BlogID=13454&PostID=687606&A=Trackback
Trackbacks
Post has no trackbacks.

Recent Posts


Tags

evaporite anthropogenic potash methanogenesis Sulphate of potash bischofite Turkmenistan Hell Kettle Mesoproterozoic nacholite salt ablation breccia marine brine Salar de Atacama Crescent potash Catalayud Hadley Cell SedEx epsomite Belle Plain Member potash ore salt leakage, dihedral angle, halite, halokinesis, salt flow, Proterozoic knistersalz solar concentrator pans DHAB lithium carbonate sinjarite nitrogen Lomagundi Event brine pan vanished evaporite seal capacity sulphate 13C halite-hosted cave Badenian Quaternary climate flowing salt End-Triassic MgSO4 depleted Paleoproterozoic Oxygenation Event Realmonte potash Neutron Log Lamellibrachia luymesi antarcticite Warrawoona Group mirabilite well log interpretation Patience Lake member endosymbiosis well logs in evaporites Phaneozoic climate Neoproterozoic Oxygenation Event basinwide evaporite gas outburst deep seafloor hypersaline anoxic basin Mulhouse Basin Weeks Island salt mine well blowout mass die-back wireline log interpretation carnallitite Musley potash zeolite Dead Sea caves High Magadi beds salt karst Gamma log lithium battery Dallol saltpan intersalt Evaporite-source rock association solikamsk 2 dihedral angle Calyptogena ponderosa climate control on salt collapse doline gem Great Salt Lake meta-evaporite Messinian oil gusher GR log NPHI log African rift valley lakes Density log dark salt freefight lake Schoenite venice MVT deposit sedimentary copper End-Permian salt periphery Koppen climate LIP anthropogenically enhanced salt dissolution salt tectonics hydrohalite mummifiction lithium brine Deep halokinetic MOP sulfate recurring slope lines (RSL) Jefferson Island salt mine SOP ancient climate snake-skin chert North Pole halocarbon halite perchlorate carbon oxygen isotope cross plots silica solubility lot's wife HYC Pb-Zn salt trade Zaragoza sepiolite doline hydrogen Ethiopia hydrothermal karst organic matter dissolution collapse doline sodium silicate auto-suture potash ore price astrakanite York (Whitehall) Mine Thiotrphic symbionts Boulby Mine cryogenic salt carbon cycle extrasalt Corocoro copper Ure Terrace Muriate of potash methane Danakhil Depression, Afar Large Igneous Magmatic Province circum-Atlantic Salt Basins CO2: albedo jadarite black salt water on Mars Neoproterozoic alkaline lake chert potash Seepiophila jonesi Archean salt seal Hyperarid sulphur magadiite source rock halotolerant methanotrophic symbionts halogenated hydrocarbon Deep seafloor hypersaline anoxic lake Sumo mine stability Lop Nor Precambrian evaporites saline giant brine lake edge ozone depletion silicified anhydrite nodules Red Sea Bathymodiolus childressi deep meteoric potash evaporite-metal association causes of glaciation MgSO4 enriched crocodile skin chert Koeppen Climate seawater evolution Dead Sea karst collapse 18O enrichment gassy salt NaSO4 salts gas in salt Pilbara Dead Sea saltworks anomalous salt zones 13C enrichment authigenic silica rockburst Magdalen's Road tachyhydrite kainitite phreatic explosion halophile RHOB Lop Nur eolian transport Atlantis II Deep salt mine phreatomagmatic explosion allo-suture vadose zone hydrothermal potash geohazard waste storage in salt cavity sinkhole Stebnyk potash K2O from Gamma Log Five Island salt dome trend water in modern-day Mars evaporite dissolution Hadley cell: Ingebright Lake sulfur CO2 stevensite supercontinent salt suture Pangaea bedded potash brine evolution evaporite-hydrocarbon association lunette base metal Ripon evaporite karst Platform evaporite Zabuye Lake stable isotope saline clay SO2 nuclear waste storage natural geohazard Lake Peigneur Mega-monsoon Kalush Potash palygorskite Lake Magadi hectorite lapis lazuli H2S 18O capillary zone Prairie Evaporite Kara bogaz gol Karabogazgol End-Cretaceous Clayton Valley playa: vestimentiferan siboglinids causes of major extinction events hydrological indicator cauliflower chert lazurite subsidence basin Stebnik Potash intrasalt Belle Isle salt mine McArthur River Pb-Zn DHAL blowout trona gypsum dune namakier CaCl2 brine

Archive